Bitcoin

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

July 31, 2018

What is Bitcoin?

- Cryptocurrency
- Open source
- Decentralized network

Decentralization Challenges

- Counterfeiting
- Currency creation rules
- Double spending
- Alice pays Bob n digicoins for a cake
- Alice uses the same n digicoins to pay Charlie for a book

Solution without a central coordinator?

Double Spending

- Familiar to academics
- Submitting same paper to two conferences
- Possible solution Reviewers google paper contents to find duplicates
- Solution fails if
- Conferences accepting papers at same time
- Conference proceedings not published/indexed
- Better solution

A single public database to store all submissions to all conferences

The Blockchain

Blockchain: A public database to store all transactions which is replicated by many network nodes

How are the blocks linked?

Block Header

nVersion
hashPrevBlock
hashMerkleRoot
nTime
nBits
nNonce

4 bytes
32 bytes
32 bytes
4 bytes
4 bytes
4 bytes

Previous Block Header

nVersion	
hashPrevBlock	
hashMerkleRoot	
nTime	
nBits	
nNonce	nVersion Double SHA-256
	hashPrevBlock hashMerkleRoot nTime nBits nNonce

Bitcoin Mining (1/2)

- Process of adding new blocks to the blockchain
- Nodes which want to perform transactions broadcast them
- Miners collect some of these transactions into a candidate block

Block Header
Number of
Transactions n
Coinbase
Transaction
Regular
Transaction 1
Regular
Transaction 2
\vdots
Regular
Transaction $n-1$

nVersion
hashPrevBlock
hashMerkleRoot
nTime
nBits
nNonce

- hashPrevBlock contains double SHA-256 has of previous block's header
- hashMerkleRoot contains root hash of transaction Merkle tree

Bitcoin Mining (2/2)

Block Header
Number of
Transactions n
Coinbase
Transaction
Regular
Transaction 1
Regular
Transaction 2
\vdots
Regular
Transaction $n-1$

nVersion
hashPrevBlock
hashMerkleRoot
nTime
nBits
nNonce

- nBits encodes a 256-bit target value T, say

$$
T=0 \times \underbrace{00 \cdots 00}_{16 \text { times }} \underbrace{\text { FFFFF } \cdots \text { FFFFF }}_{48 \text { times }}
$$

- Miner who can find nNonce such that

SHA256 (SHA256 (nVersion || hashPrevBlock || ... || nNonce)) $\leq T$
can add a new block

- Modifying any header field will require solving PoW puzzle again

Why is Mining Hard?

| Target value |
| :---: | :---: |
| T |$|$| Fraction of |
| :---: |
| SHA256d outputs $\leq T$ |

$$
\operatorname{Pr}[\text { SHA } 256 d \text { output } \leq T] \approx \frac{T+1}{2^{256}}
$$

Why should anyone mine blocks?

- Successful miner gets rewarded in bitcoins
- Every block contains a coinbase transaction which creates 12.5 bitcoins
- Each miner specifies his own address as the destination of the new coins
- Every miner is competing to solve their own PoW puzzle
- Miners also collect the transaction fees in the block

Block Addition Workflow

- Nodes broadcast transactions
- Miners accept valid transactions and reject invalid ones (solves double spending)
- Miners try extending the latest block

- Miners compete to solve the search puzzle and broadcast solutions
- Unsuccessful miners abandon their current candidate blocks and start work on new ones

What if two miners solve the puzzle at the same time?

- Both miners will broadcast their solution on the network
- Nodes will accept the first solution they hear and reject others

- Nodes always switch to the chain which was more difficult to produce
- Eventually the network will converge and achieve consensus

How often are new blocks created?

- Once every 10 minutes

nVersion
hashPrevBlock
hashMerkleRoot
nTime
nBits
nNonce

- Every 2016 blocks, the target T is recalculated
- Let $t_{\text {sum }}=$ Number of seconds taken to mine last 2016 blocks

$$
T_{\text {new }}=\frac{t_{\text {sum }}}{2016 \times 10 \times 60} \times T
$$

- Recall that probability of success in single trial is $\frac{T+1}{2^{256}}$
- If $t_{\text {sum }}=2016 \times 8 \times 60$, then $T_{\text {new }}=\frac{4}{5} T$
- If $t_{\text {sum }}=2016 \times 12 \times 60$, then $T_{\text {new }}=\frac{6}{5} T$

Bitcoin Supply

- The block subsidy was initially 50 BTC per block
- Halves every 210,000 blocks ≈ 4 years
- Became 25 BTC in Nov 2012 and 12.5 BTC in July 2016
- Total Bitcoin supply is 21 million

- The last bitcoin will be mined in 2140

Tamper Resistance

- Suppose Alice wants to modify block B_{N}

Block
Height
$N-1$
$N \quad N+1$
$N+m-1$

- Alice works on A_{N} branch; other miners work on B_{N} branch

- She needs to mine blocks faster than the rest of the miners
- Possible if she controls 50% or more of network hashrate

Key Takeaways

- Bitcoin's blockchain prevents double spending and tampering
- Secure only if nobody controls 50% or more of network hashrate
- Mining difficulty adjusted to regulate coin supply
- Miners incentivized by block reward
- Block subsidy halves every four years to cap total coin supply

References

- Chapter 4 of An Introduction to Bitcoin, S. Vijayakumaran, www.ee.iitb.ac.in/~sarva/bitcoin.html

