Digital Signatures

Saravanan Vijayakumaran
sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

July 24, 2018

Group Theory Recap

Groups

Definition

A set G with a binary operation \star defined on it is called a group if

- the operation \star is associative,
- there exists an identity element $e \in G$ such that for any $a \in G$

$$
a \star e=e \star a=a
$$

- for every $a \in G$, there exists an element $b \in G$ such that

$$
a \star b=b \star a=e
$$

Example

- Modulo n addition on $\mathbb{Z}_{n}=\{0,1,2, \ldots, n-1\}$

Cyclic Groups

Definition

A finite group is a group with a finite number of elements. The order of a finite group G is its cardinality.

Definition

A cyclic group is a finite group G such that each element in G appears in the sequence

$$
\{g, g \star g, g \star g \star g, \ldots\}
$$

for some particular element $g \in G$, which is called a generator of G.

Example

$\mathbb{Z}_{6}=\{0,1,2,3,4,5\}$ is a cyclic group with a generator 1

\mathbb{Z}_{n} and \mathbb{Z}_{n}^{*}

- For an integer $n \geq 1, \mathbb{Z}_{n}=\{0,1,2, \ldots, n-1\}$
- Operation is addition modulo n
- \mathbb{Z}_{n} is cyclic with generator 1
- For an integer $n \geq 2, \mathbb{Z}_{n}^{*}=\left\{i \in \mathbb{Z}_{n} \backslash\{0\} \mid \operatorname{gcd}(i, n)=1\right\}$
- Operation is multiplication modulo n
- $\left|\mathbb{Z}_{n}^{*}\right|=n-1$ if n is a prime
- \mathbb{Z}_{n}^{*} is cyclic if n is a prime
- Definition: If G is a cyclic group of order q with generator g, then for $h \in G$ the unique $x \in \mathbb{Z}_{q}$ which satisfies $g^{x}=h$ is called the discrete logarithm of h with respect to g.
- Finding DLs is easy in \mathbb{Z}_{n}
- Finding DLs is hard in \mathbb{Z}_{n}^{*}

Cryptography based on the Discrete Logarithm Problem

Diffie-Hellman Protocol

- Alice and Bob wish to generate a shared secret key using a public channel

1. Alice runs a group generation algorithm to get (G, q, g) where G is a cyclic group of order q with generator g.
2. Alice chooses a uniform $x \in \mathbb{Z}_{q}$ and computes $h_{A}=g^{x}$.
3. Alice sends (G, q, g, h_{A}) to Bob.
4. Bob chooses a uniform $y \in \mathbb{Z}_{q}$ and computes $h_{B}=g^{y}$. He sends h_{B} to Alice. He also computes $k_{B}=h_{A}^{y}$.
5. Alice computes $k_{A}=h_{B}^{\chi}$.

By construction, $k_{A}=k_{B}$.

- An adversary capable of finding DLs in G can learn the key

El Gamal Encryption

- Suppose Bob wants to send Alice an encrypted message
- Alice publishes her public key $\langle G, q, g, h\rangle$
- G is a cyclic group of order q with generator g
- $h=g^{x}$ where $x \in \mathbb{Z}_{q}$ is Alice's secret key
- Encryption: For message $m \in G$, Bob chooses a uniform $y \in \mathbb{Z}_{q}$ and outputs ciphertext

$$
\left\langle g^{y}, h^{y} \cdot m\right\rangle .
$$

- Decryption: From ciphertext $\left\langle c_{1}, c_{2}\right\rangle$, Alice recovers

$$
\hat{m}:=c_{2} \cdot c_{1}^{-x}
$$

Schnorr Identification Scheme

- Let G be a cyclic group of order q with generator g
- Identity corresponds to knowledge of private key x where $h=g^{x}$
- A prover wants to prove that she knows x to a verifier without revealing it

1. Prover picks $k \leftarrow \mathbb{Z}_{q}$ and sends initial message $I=g^{k}$
2. Verifier sends a challenge $r \leftarrow \mathbb{Z}_{q}$
3. Prover sends $s=r x+k \bmod q$
4. Verifier checks $g^{s} \cdot h^{-r} \stackrel{?}{=} I$

- Passive eavesdropping does not reveal x
- (I, r) is uniform on $G \times \mathbb{Z}_{q}$ and $s=\log _{g}\left(I \cdot y^{r}\right)$
- Transcripts with same distribution can be simulated without knowing x
- Choose r, s uniformly from \mathbb{Z}_{q} and set $I=g^{s} \cdot h^{-r}$
- If a cheating prover can generate two responses, he can implicity compute discrete logarithm
- Section 19.1 of Boneh-Shoup

Digital Signatures

Digital Signatures

- Digital signatures prove that the signer knows private key
- Interactive protocols are not feasible in practice

Schnorr Signature Algorithm

- Based on the Schnorr identification scheme
- Let G be a cyclic group of order q with generator g
- Let $H:\{0,1\}^{*} \mapsto \mathbb{Z}_{q}$ be a cryptographic hash function
- Signer knows $x \in \mathbb{Z}_{q}$ such that public key $h=g^{x}$
- Signer:

1. On input $m \in\{0,1\}^{*}$, chooses $k \leftarrow \mathbb{Z}_{q}$
2. Sets $I:=g^{k}$
3. Computes $r:=H(I, m)$
4. Computes $s=r x+k \bmod q$
5. Outputs (r, s) as signature for m

- Verifier

1. On input m and (r, s)
2. Compute $I:=g^{s} \cdot h^{-r}$
3. Signature valid if $H(I, m) \stackrel{?}{=} r$

- Example of Fiat-Shamir transform
- Patented by Claus Schnorr in 1988

Digital Signature Algorithm

- Part of the Digital Signature Standard issued by NIST in 1994
- Based on the following identification protocol

1. Suppose prover knows $x \in \mathbb{Z}_{q}$ such that public key $h=g^{x}$
2. Prover chooses $k \leftarrow \mathbb{Z}_{q}^{*}$ and sends $I:=g^{k}$
3. Verifier chooses uniform $\alpha, r \in \mathbb{Z}_{q}$ and sends them
4. Prover sends $s:=\left[k^{-1} \cdot(\alpha+x r) \bmod q\right]$ as response
5. Verifier accepts if $s \neq 0$ and

$$
g^{\alpha s^{-1}} \cdot h^{r s^{-1}} \stackrel{?}{=} I
$$

- Digital Signature Algorithm

1. Let $H:\{0,1\}^{*} \mapsto \mathbb{Z}_{q}$ be a cryptographic hash function
2. Let $F: G \mapsto \mathbb{Z}_{q}$ be a function, not necessarily CHF
3. Signer:
3.1 On input $m \in\{0,1\}^{*}$, chooses $k \leftarrow \mathbb{Z}_{q}^{*}$ and sets $r:=F\left(g^{k}\right)$
3.2 Computes $s:=\left[k^{-1} \cdot(H(m)+x r)\right] \bmod q$
3.3 If $r=0$ or $s=0$, choose k again
3.4 Outputs (r, s) as signature for m
4. Verifier
4.1 On input m and (r, s) with $r \neq 0, s \neq 0$ checks

$$
F\left(g^{H(m) s^{-1}} h^{r s^{-1}}\right) \stackrel{?}{=} r
$$

Elliptic Curves Over Real Numbers

Elliptic Curves over Reals

The set E of real solutions (x, y) of

$$
y^{2}=x^{3}+a x+b
$$

along with a "point of infinity" \mathcal{O}. Here $4 a^{3}+27 b^{2} \neq 0$.

$$
y^{2}=x^{3}-x+2
$$

$y^{2}=x^{3}-2 x$

Point Addition (1/3)

$$
\begin{gathered}
P=\left(x_{1}, y_{1}\right), Q=\left(x_{2}, y_{2}\right) \\
x_{1} \neq x_{2} \\
P+Q=R \\
R=\left(x_{3}, y_{3}\right) \\
x_{3}=\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)^{2}-x_{1}-x_{2} \\
y_{3}=\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)\left(x_{1}-x_{3}\right)-y_{1}
\end{gathered}
$$

Point Addition (2/3)

$$
\begin{gathered}
P=\left(x_{1}, y_{1}\right), Q=\left(x_{2}, y_{2}\right) \\
x_{1}=x_{2}, y_{1}=-y_{2} \\
P+Q=\mathcal{O}
\end{gathered}
$$

Point Addition (3/3)

$$
\begin{gathered}
P=\left(x_{1}, y_{1}\right), Q=\left(x_{2}, y_{2}\right) \\
x_{1}=x_{2}, y_{1}=y_{2} \neq 0 \\
P+Q=R \\
R=\left(x_{3}, y_{3}\right) \\
x_{3}=\left(\frac{3 x_{1}^{2}+a}{2 y_{1}}\right)^{2}-2 x_{1} \\
y_{3}=\left(\frac{3 x_{1}^{2}+a}{2 y_{1}}\right)\left(x_{1}-x_{3}\right)-y_{1}
\end{gathered}
$$

Elliptic Curves Over Finite Fields

Fields

Definition

A set F together with two binary operations + and $*$ is a field if

- F is an abelian group under + whose identity is called 0
- $F^{*}=F \backslash\{0\}$ is an abelian group under $*$ whose identity is called 1
- For any $a, b, c \in F$

$$
a *(b+c)=a * b+a * c
$$

Definition
A finite field is a field with a finite cardinality.

Prime Fields

- $\mathbb{F}_{p}=\{0,1,2, \ldots, p-1\}$ where p is prime
- + and $*$ defined on \mathbb{F}_{p} as

$$
\begin{aligned}
x+y & =x+y \bmod p, \\
x * y & =x y \bmod p .
\end{aligned}
$$

- \mathbb{F}_{5}

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

$*$	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

- In fields, division is multiplication by multiplicative inverse

$$
\frac{x}{y}=x * y^{-1}
$$

Characteristic of a Field

Definition

Let F be a field with multiplicative identity 1 . The characteristic of F is the smallest integer p such that

$$
\underbrace{1+1+\cdots+1+1}_{p \text { times }}=0
$$

Examples

- \mathbb{F}_{2} has characteristic 2
- \mathbb{F}_{5} has characteristic 5
- \mathbb{R} has characteristic 0

Theorem
The characteristic of a finite field is prime

Elliptic Curves over Finite Fields

For $\operatorname{char}(F) \neq 2,3$, the set E of solutions (x, y) in \mathbb{F}^{2} of

$$
y^{2}=x^{3}+a x+b
$$

along with a "point of infinity" \mathcal{O}. Here $4 a^{3}+27 b^{2} \neq 0$.

$y^{2}=x^{3}+10 x+2$ over \mathbb{F}_{11}

$y^{2}=x^{3}+9 x$ over \mathbb{F}_{11}

Point Addition for Finite Field Curves

- Point addition formulas derived for reals are used
- Example: $y^{2}=x^{3}+10 x+2$ over \mathbb{F}_{11}

+	\mathcal{O}	$(3,2)$	$(3,9)$	$(5,1)$	$(5,10)$	$(6,5)$	$(6,6)$	$(8,0)$
\mathcal{O}	\mathcal{O}	$(3,2)$	$(3,9)$	$(5,1)$	$(5,10)$	$(6,5)$	$(6,6)$	$(8,0)$
$(3,2)$	$(3,2)$	$(6,6)$	\mathcal{O}	$(6,5)$	$(8,0)$	$(3,9)$	$(5,10)$	$(5,1)$
$(3,9)$	$(3,9)$	\mathcal{O}	$(6,5)$	$(8,0)$	$(6,6)$	$(5,1)$	$(3,2)$	$(5,10)$
$(5,1)$	$(5,1)$	$(6,5)$	$(8,0)$	$(6,6)$	\mathcal{O}	$(5,10)$	$(3,9)$	$(3,2)$
$(5,10)$	$(5,10)$	$(8,0)$	$(6,6)$	\mathcal{O}	$(6,5)$	$(3,2)$	$(5,1)$	$(3,9)$
$(6,5)$	$(6,5)$	$(3,9)$	$(5,1)$	$(5,10)$	$(3,2)$	$(8,0)$	\mathcal{O}	$(6,6)$
$(6,6)$	$(6,6)$	$(5,10)$	$(3,2)$	$(3,9)$	$(5,1)$	\mathcal{O}	$(8,0)$	$(6,5)$
$(8,0)$	$(8,0)$	$(5,1)$	$(5,10)$	$(3,2)$	$(3,9)$	$(6,6)$	$(6,5)$	\mathcal{O}

- The set $E \cup \mathcal{O}$ is closed under addition
- In fact, its a group

Bitcoin's Elliptic Curve: secp256k1

- $y^{2}=x^{3}+7$ over \mathbb{F}_{p} where

$$
\begin{aligned}
p & =\underbrace{\text { EFFFFFFF } \cdots \text { FFFFFFFF FFFFFFFE FFFFFC2F }}_{48 \text { hexadecimal digits }} \\
& =2^{256}-2^{32}-2^{9}-2^{8}-2^{7}-2^{6}-2^{4}-1
\end{aligned}
$$

- $E \cup \mathcal{O}$ has cardinality n where

$$
\begin{aligned}
n= & \text { FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE } \\
& \text { BAAEDCE6 AF48A03B BFD25E8C D0364141 }
\end{aligned}
$$

- Private key is $k \in\{1,2, \ldots, n-1\}$
- Public key is $k P$ where $P=(x, y)$

$$
\begin{aligned}
& x=79 \mathrm{BE} 667 \mathrm{E} \text { F9DCBBAC 55A06295 CE870B07 } \\
& \text { 029BFCDB 2DCE28D9 59F2815B 16F81798, } \\
& y=483 A D A 77 \text { 26A3C465 5DA4FBFC 0E1108A8 } \\
& \text { FD17B448 A6855419 9C47D08F FB10D4B8. }
\end{aligned}
$$

Point Multiplication using Double-and-Add

- Point multiplication: $k P$ calculation from k and P
- Let $k=k_{0}+2 k_{1}+2^{2} k_{2}+\cdots+2^{m} k_{m}$ where $k_{i} \in\{0,1\}$
- Double-and-Add algorithm
- Set $N=P$ and $Q=\mathcal{O}$
- for $i=0,1, \ldots, m$
- if $k_{i}=1$, set $Q \leftarrow Q+N$
- Set $N \leftarrow 2 N$
- Return Q

Why ECC?

- For elliptic curves $E\left(\mathbb{F}_{q}\right)$, best DL algorithms are exponential in $n=\left\lceil\log _{2} q\right\rceil$

$$
C_{E C}(n)=2^{n / 2}
$$

- In \mathbb{F}_{p}^{*}, best DL algorithms are sub-exponential in $N=\left\lceil\log _{2} p\right\rceil$
- $L_{p}(v, c)=\exp \left(c(\log p)^{v}(\log \log p)^{(1-v)}\right)$ with $0<v<1$
- Using GNFS method, DLs can be found in $L_{p}\left(1 / 3, c_{0}\right)$ in \mathbb{F}_{p}^{*}

$$
C_{C O N V}(N)=\exp \left(c_{0} N^{1 / 3}(\log (N \log 2))^{2 / 3}\right)
$$

- Best algorithms for factorization have same asymptotic complexity
- For similar security levels

$$
n=\beta N^{1 / 3}(\log (N \log 2))^{2 / 3}
$$

- Key size in ECC grows slightly faster than cube root of conventional key size
- 173 bits instead of 1024 bits, 373 bits instead of 4096 bits

ECDSA in Bitcoin

- Signer: Has private key k and message m

1. Compute $e=$ SHA-256(SHA-256(m))
2. Choose a random integer j from \mathbb{Z}_{n}^{*}
3. Compute $j P=(x, y)$
4. Calculate $r=x$ mod n. If $r=0$, go to step 2 .
5. Calculate $s=j^{-1}(e+k r) \bmod n$. If $s=0$, go to step 2 .
6. Output (r, s) as signature for m

- Verifier: Has public key $k P$, message m, and signature (r, s)

1. Calculate $e=$ SHA-256(SHA-256(m))
2. Calculate $j_{1}=e s^{-1} \bmod n$ and $j_{2}=r s^{-1} \bmod n$
3. Calculate the point $Q=j_{1} P+j_{2}(k P)$
4. If $Q=\mathcal{O}$, then the signature is invalid.
5. If $Q \neq \mathcal{O}$, then let $Q=(x, y) \in \mathbb{F}_{p}^{2}$. Calculate $t=x \bmod n$. If $t=r$, the signature is valid.

- As n is a 256 -bit integer, signatures are 512 bits long
- As j is randomly chosen, ECDSA output is random for same m

References

- Sections 10.3, 11.4, 12.5 of Introduction to Modern Cryptography, J. Katz, Y. Lindell, 2nd edition
- Section 19.1 of A Graduate Course in Applied Cryptography, D. Boneh, V. Shoup, www. cryptobook.us
- Chapter 2 of An Introduction to Bitcoin, S. Vijayakumaran, www.ee.iitb.ac.in/~sarva/bitcoin.html

