
Ethereum Blocks

Saravanan Vijayakumaran
sarva@ee.iitb.ac.in

Department of Electrical Engineering
Indian Institute of Technology Bombay

August 31, 2018

1 / 21

mailto:sarva@ee.iitb.ac.in

Ethereum Block Header
Block = (Header, Transactions, Uncle Headers)

parentHash
ommersHash
beneficiary
stateRoot

transactionsRoot
receiptsRoot
logsBloom
difficulty

number
gasLimit
gasUsed
timestamp
extraData
mixHash
nonce

Block Header

32 bytes
32 bytes
20 bytes
32 bytes
32 bytes
32 bytes

256 bytes
≥ 1 byte
≥ 1 byte
≥ 1 byte
≥ 1 byte
≤ 32 bytes
≤ 32 bytes

32 bytes
8 bytes

2 / 21

Simple Fields in Block Header
parentHash
ommersHash
beneficiary
stateRoot

transactionsRoot
receiptsRoot
logsBloom
difficulty

number
gasLimit
gasUsed

timestamp
extraData
mixHash
nonce

32 bytes
32 bytes
20 bytes
32 bytes
32 bytes
32 bytes

256 bytes
≥ 1 byte
≥ 1 byte
≥ 1 byte
≥ 1 byte
≤ 32 bytes
≤ 32 bytes

32 bytes
8 bytes

• parentHash = Keccak-256 hash of parent block header
• beneficiary = Destination address of block reward and transaction fees
• stateRoot = Root hash of world state trie after all transactions are applied
• transactionsRoot = Root hash of trie populated with all transactions in the block
• number = Number of ancestor blocks
• timestamp = Unix time at block creation
• extraData = Arbitrary data; Miners identify themselves in this field

3 / 21

gasLimit and gasUsed
parentHash
ommersHash
beneficiary
stateRoot

transactionsRoot
receiptsRoot
logsBloom
difficulty

number
gasLimit
gasUsed

timestamp
extraData
mixHash
nonce

32 bytes
32 bytes
20 bytes
32 bytes
32 bytes
32 bytes

256 bytes
≥ 1 byte
≥ 1 byte
≥ 1 byte
≥ 1 byte
≤ 32 bytes
≤ 32 bytes

32 bytes
8 bytes

• gasUsed is the total gas used by all transactions in the block
• gasLimit is the maximum gas which can be used
• |gasLimit - parent.gasLimit| ≤ parent.gasLimit

1024

• Miner can choose to increase or decrease the gasLimit

4 / 21

logsBloom and receiptsRoot
parentHash
ommersHash
beneficiary
stateRoot

transactionsRoot
receiptsRoot
logsBloom
difficulty

number
gasLimit
gasUsed

timestamp
extraData
mixHash
nonce

32 bytes
32 bytes
20 bytes
32 bytes
32 bytes
32 bytes

256 bytes
≥ 1 byte
≥ 1 byte
≥ 1 byte
≥ 1 byte
≤ 32 bytes
≤ 32 bytes

32 bytes
8 bytes

• Bloom filter = Probabilistic data structure for set

• Query: Is x in the set? Response: “Maybe” or “No”

• receiptsRoot is the root hash of transaction receipts trie

• Each transaction receipt contains Bloom filter of addresses and “topics”

• logBloom is the OR of all transaction receipt Bloom filters

• Light clients can efficiently retrieve only transactions of interest

5 / 21

Mining

Ethash Mining Algorithm

• An epoch lasts 30,000 blocks
• Epoch index EI = block_number / 30000
• At an epoch beginning

• A list called cache of size ≈ 224 + EI × 217 bytes is created
• A list called dataset of size ≈ 230 + EI × 223 bytes is created

• The dataset is also called the DAG (directed acyclic graph)

Block Number Epoch Cache Size DAG Size Start Date
30000 1 16 MB 1 GB 17 Oct, 2015

3840000 128 32 MB 2 GB 21 Jul, 2017
7680000 256 48 MB 3 GB 30 Apr, 2019

192000000 640 96 MB 6 GB 25 Aug, 2024

Source: https://investoon.com/tools/dag_size

• Mining nodes need to store full dataset (ASIC resistance)
• Light nodes store cache and recalculate specific dataset items

7 / 21

https://investoon.com/tools/dag_size

Ethash Mining Algorithm
parentHash
ommersHash
beneficiary
stateRoot

transactionsRoot
receiptsRoot
logsBloom
difficulty

number
gasLimit
gasUsed

timestamp
extraData
mixHash
nonce

32 bytes
32 bytes
20 bytes
32 bytes
32 bytes
32 bytes

256 bytes
≥ 1 byte
≥ 1 byte
≥ 1 byte
≥ 1 byte
≤ 32 bytes
≤ 32 bytes

32 bytes
8 bytes

• Cache calculation involves hashing previous cache elements pseudorandomly

• Every dataset element involves hashing 256 pseudorandom cache elements

• Mining loop takes partial header hash, nonce, and dataset as input

• 128 dataset elements are used to create 256-bit mixHash

Mining output = Keccak256 (Keccak512(HdrHash‖nonce)‖mixHash)

8 / 21

Mining Difficulty
parentHash
ommersHash
beneficiary
stateRoot

transactionsRoot
receiptsRoot
logsBloom
difficulty

number
gasLimit
gasUsed

timestamp
extraData
mixHash
nonce

32 bytes
32 bytes
20 bytes
32 bytes
32 bytes
32 bytes

256 bytes
≥ 1 byte
≥ 1 byte
≥ 1 byte
≥ 1 byte
≤ 32 bytes
≤ 32 bytes

32 bytes
8 bytes

• Proof of work is valid if mixhash and nonce lead to

Keccak256 (Keccak512(HdrHash‖nonce)‖mixHash) ≤
2256

difficulty

• Partial validation of PoW in block can be done without DAG or cache

• Difficulty adjustment algorithm explained after discussing uncles

9 / 21

Uncle Incentivization

Uncle Blocks

• Block = (Block Header, Transactions List, Uncle Header List)
• ommersHash in block header is hash of uncle header list
• Problem: Low inter-block time leads to high stale rate

• Stale blocks do not contribute to network security
• High stale rate may lead to mining centralization

• Solution: Reward stale block miners and also miners who
include stale block headers

• Rewarded stale blocks are called uncles or ommers
• Transactions in uncle blocks are invalid
• Only a fraction of block reward goes to uncle creator; no

transaction fees

• Greedy Heaviest Observed Subtree (GHOST) protocol proposed
by Sompolinsky and Zohar in December 2013

• Ethereum uses a simpler version of GHOST

11 / 21

GHOST Protocol

0

1B

1A 2A 3A 4A 5A 6A

2B

2C

2D

3A

3B

3C

3D

3E

3F

4B

4C 5B

• A policy for choosing the main chain in case of forks
• Given a block tree T , the protocol specifies GHOST(T) as the

block representing the main chain
• Mining nodes calculate GHOST(T) locally and mine on top of it
• Heaviest subtree rooted at fork is chosen

12 / 21

GHOST Protocol

0

1B

1A 2A 3A 4A 5A 6A

2B

2C

2D

3A

3B

3C

3D

3E

3F

4B

4C 5B

function CHILDRENT (B)
return Set of blocks with B as immediate parent

end function
function SUBTREET (B)

return Subtree rooted at B
end function
function GHOST(T)

B ← Genesis Block
while True do

if CHILDRENT (B) = ∅ then return B and exit
elseB ← argmaxC∈CHILDRENT (B) |SUBTREET (C)|
end if

end while
end function

13 / 21

GHOST Protocol Example

0

1B

1A 2A 3A 4A 5A 6A

2B

2C

2D

3A

3B

3C

3D

3E

3F

4B

4C 5B

• Suppose an attacker secretly constructs the chain 1A, 2A,. . . , 6A
• All other blocks are mined by honest miners
• Honest miners’ efforts are spread over multiple forks
• Longest chain rule gives 0,1B,2D,3F,4C,5B as main chain

• Shorter than attacker’s chain

• GHOST rule gives 0,1B,2C,3D,4B as main chain

14 / 21

Main Chain Selection and Uncle Rewards
• Chain with maximum total difficulty is chosen

• Total difficulty is sum of block difficulty values

• Uncles contribute to difficulty since Oct 2017 (Byzantium)
• A uncle block of a given block satisfies the following

• Cannot be a direct ancestor of given block
• Cannot already be included as an uncle block in the past
• Has to be the child of given block’s ancestor at depth 2 to 7

• Mining reward
• Block reward = 3 ETH, Nephew reward = 3

32 ETH
• Total reward to block miner is

Block reward + NumUncles × Nephew reward

• NumUncles can be at most 2
• Uncle miner gets

Block reward × (8 + UncleHeight − BlockHeight)
8

15 / 21

Difficulty Adjustment

Difficulty Adjustment Algorithm Evolution

Frontier Release, July 2015

1 MIN_DIFF = 131072
2
3 def calc_difficulty(parent, timestamp):
4 offset = parent.difficulty // 2048
5 sign = 1 if timestamp - parent.timestamp < 13 else -1
6 return int(max(parent.difficulty + offset * sign, MIN_DIFF))

• If difference between current timestamp and parent’s timestamp
is less than 13 seconds, difficulty is increased

• Otherwise, difficulty is decreased
• Quantum of change is 1

2048 of parent block’s difficulty
• Difficulty is not allowed to go below a fixed minimum

17 / 21

Difficulty Adjustment Algorithm Evolution

Patch to Frontier Release, August 2015

1 MIN_DIFF = 131072
2 EXPDIFF_PERIOD = 100000
3 EXPDIFF_FREE_PERIODS = 2
4
5 def calc_difficulty(parent, timestamp):
6 offset = parent.difficulty // 2048
7 sign = 1 if timestamp - parent.timestamp < 13 else -1
8 o = int(max(parent.difficulty + offset * sign, MIN_DIFF))
9 period_count = (parent.number + 1) // EXPDIFF_PERIOD

10 if period_count >= EXPDIFF_FREE_PERIODS:
11 o = max(o + 2**(period_count - EXPDIFF_FREE_PERIODS),

MIN_DIFF)
12 return o

• Difficulty time bomb was added to force move to proof-of-stake
• Bomb term added to every block’s difficulty double every 100,000

blocks
• Ice age = Blocks too difficult to find

18 / 21

Difficulty Adjustment Algorithm Evolution

Homestead Release, March 2016, Block 1150000

1 def calc_difficulty(parent, timestamp):
2 <snip>
3 time_diff = timestamp - parent.timestamp
4 sign = max(1 - time_diff // 10, -99)
5 <snip>

• Protocol requires timestamp > parent.timestamp

• time_diff in range 1, 2,. . . , 9 =⇒ sign = 1
• time_diff in range 10, 11,. . . , 19 =⇒ sign = 0
• time_diff in range 20, 21,. . . , 29 =⇒ sign = −1
• time_diff ≥ 1010 =⇒ sign = −99
• Rationale

• Previous algorithm targeted a median block time of 13 seconds
• New algorithm targets a mean block time of 15 seconds

• See vague justification in EIP 2

19 / 21

Difficulty Adjustment Algorithm Evolution

Byzantium Release, October 2017, Block 4370000

1 def calc_difficulty(parent, timestamp):
2 EXPDIFF_PERIOD = 100000
3 <snip>
4 time_diff = timestamp - parent.timestamp
5 uncle_factor = 2 if len(parent.uncles) else 1
6 sign = max(uncle_factor - time_diff // 9, -99)
7 <snip>
8 period_count = (parent.number + 1) // EXPDIFF_PERIOD
9 period_count = period_count - 30

10 if period_count >= 2:
11 o = max(o + 2**(period_count - 2), MIN_DIFF)
12 return o

• Take uncles into account while adjusting difficulty
• https://github.com/ethereum/EIPs/issues/100

• Delays ice age by approximately 42 million seconds to account
for PoS delays

• Block reward reduced from 5 ETH to 3 ETH

20 / 21

https://github.com/ethereum/EIPs/issues/100

References
• Yellow paper https://ethereum.github.io/yellowpaper/paper.pdf
• Light client protocol

https://github.com/ethereum/wiki/wiki/Light-client-protocol

• Ethash https://github.com/ethereum/wiki/wiki/Ethash

• GHOST paper https://eprint.iacr.org/2013/881
• Uncle calculations https://github.com/ethereum/pyethereum/blob/

develop/ethereum/pow/consensus.py

• Homestead difficulty adjustment
https://ethereum.stackexchange.com/questions/5913/
how-does-the-ethereum-homestead-difficulty-adjustment-algorithm-work

• Rationale for Homestead difficulty adjustment
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-2.md

• Byzantium difficulty adjustment https:
//blog.ethereum.org/2017/10/12/byzantium-hf-announcement/

21 / 21

https://ethereum.github.io/yellowpaper/paper.pdf
https://github.com/ethereum/wiki/wiki/Light-client-protocol
https://github.com/ethereum/wiki/wiki/Ethash
https://eprint.iacr.org/2013/881
https://github.com/ethereum/pyethereum/blob/develop/ethereum/pow/consensus.py
https://github.com/ethereum/pyethereum/blob/develop/ethereum/pow/consensus.py
https://ethereum.stackexchange.com/questions/5913/how-does-the-ethereum-homestead-difficulty-adjustment-algorithm-work
https://ethereum.stackexchange.com/questions/5913/how-does-the-ethereum-homestead-difficulty-adjustment-algorithm-work
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-2.md
https://blog.ethereum.org/2017/10/12/byzantium-hf-announcement/
https://blog.ethereum.org/2017/10/12/byzantium-hf-announcement/

	Mining
	Uncle Incentivization
	Difficulty Adjustment

