
Stellar Consensus Protocol

Saravanan Vijayakumaran
sarva@ee.iitb.ac.in

Department of Electrical Engineering
Indian Institute of Technology Bombay

September 25, 2018

1 / 30

mailto:sarva@ee.iitb.ac.in

Lecture Plan

• Consensus Protocol Terminology
• Related Protocols for Context

• Paxos
• PBFT

• Federated Byzantine Agreement Model
• Federated Voting
• Stellar Consensus Protocol (in brief)

2 / 30

Consensus Protocol Terminology

• Agents: Parties interested in achieving consensus
• Each agent has an input
• Agents use protocol to agree on one of the inputs
• Each agent decides on a chosen value
• Agent failure modes

• Stopping failure
• Byzantine failure

• Safety
• Agreement: No two non-faulty agents decide on different values
• Validity: If all non-faulty agents have the same input v , then v is

the only possible decision value
• Liveness

• Termination: All non-faulty agents eventually decide
• Asynchronous network model

• Messages may be delayed, duplicated, lost, reordered
• No corrupted messages

3 / 30

Paxos

Paxos

• Consensus protocol for non-Byzantine agents and asynchronous
network

• Proposed by Leslie Lamport in 1989
• Number of agents is known
• Agents act as proposers, acceptors, or learners (multiple roles

allowed)
• Proposers propose values
• Acceptors accept a value if requested by a proposer
• Once a majority of acceptors has accepted a value, consensus

has been achieved
• Learners are interested in learning about consensus values
• Challenges

• Messages indicating acceptance may be lost
• Consensus may be achieved without proposers finding out
• Multiple proposers may be simultaneously proposing values

5 / 30

Paxos Protocol Phase 1

• Proposal made by proposers have a proposal number n from a
totally ordered set

• Phase 1
• Proposer sends a prepare request with number n to all acceptors
• If acceptor receives a prepare request with number higher than any other

previous prepare request, then
1. it promises to not accept any more proposals with number less than n

and
2. returns highest-numbered proposal value (if any) it has accepted

• Example
Prop. No. Value Agent 1 Agent 2 Agent 3

1 7 7 〈〉 〈〉

2 8 8 〈〉 〈〉

3 9 〈〉 〈〉 9

For proposal 4, highest-numbered proposal accepted among all
responses is used

6 / 30

Paxos Protocol Phase 2
• Phase 2

• If proposer receives a response to its prepare request from a majority of
acceptors, then it either
• sends an accept request to each these acceptors with value v which

is the highest-numbered proposal among the responses or
• sends an accept request with any value if responses reported no

proposals.
• If acceptor receives an accept request for a proposal number n, it accepts

the proposal unless it has already responded to a prepare request having
number greater than n.

• Example 1
Prop. No. Value Agent 1 Agent 2 Agent 3

1 7 7 〈〉 〈〉

2 8 8 〈〉 〈〉

3 9 〈〉 〈〉 9

• For proposal 4, proposer can send accept request with
• 8 if only agents 1 and 2 respond
• 9 if only agents 2 and 3 respond

7 / 30

Paxos Protocol Phase 2
• Phase 2

• If proposer receives a response to its prepare request from a majority of
acceptors, then it either
• sends an accept request to each these acceptors with values v which

is the highest-numbered proposal among the responses or
• sends an accept request with any value if responses reported no

proposals.
• If acceptor receives an accept request for a proposal number n, it accepts

the proposal unless it has already responded to a prepare request having
number greater than n.

• Example 2
Prop. No. Value Agent 1 Agent 2 Agent 3

1 8 8 〈〉 〈〉

2 9 9 〈〉 9

3 9 〈〉 〈〉 9

• For proposal 4, proposer can send accept request with only
value 9

8 / 30

Paxos Protocol
• Phase 1

• Proposer sends a prepare request with number n to all acceptors
• If acceptor receives a prepare request with number higher than any other

previous prepare request, then
1. it promises to not accept any more proposals with number less than n

and
2. returns highest-numbered proposal value (if any) it has accepted

• Phase 2
• If proposer receives a response to its prepare request from a majority of

acceptors, then it either
• sends an accept request to each these acceptors with values v which

is the highest-numbered proposal among the responses or
• sends an accept request with any value if responses reported no

proposals.
• If acceptor receives an accept request for a proposal number n, it accepts

the proposal unless it has already responded to a prepare request having
number greater than n.

• Learners need messages from a majority of acceptors to find out
about consensus value

9 / 30

Proposer Selection
• Lamport describes a method using timeouts

• Each agent broadcasts its ID and the one with the highest ID is the
proposer

• Presence of multiple proposers cannot violate safety but can
affect liveness
• Proposer p completes phase 1 for proposal number n1

• Proposer q completes phase 1 for proposal number n2 > n1

• Proposer p’s phase 2 messages are ignored
• Proposer p completes phase 1 for new proposal with number

n3 > n2

• Proposer q’s phase 2 messages are ignored
• And so on

• FLP Impossibility Theorem: No deterministic consensus
algorithm can guarantee all three of safety, liveness, and
fault-tolerance in an asynchronous system.

10 / 30

Practical Byzantine Fault Tolerance

PBFT
• Proposed in 1999 as an algorithm for state machine replication

• Each agent is a replica of a state machine
• Replicas need to achieve consensus on state transitions

• Assumes Byzantine agent failures and weak synchrony
• Messages may be delayed, duplicated, lost, reordered
• Delays do not grow faster than t indefinitely

• Guarantees safety and liveness if at most b n−1
3 c out of n replicas

are faulty
• For f faulty replicas, 3f + 1 is the minimum number of replicas

required

• Let R be the set of replicas with cardinality 3f + 1
• Each replica is identified using an integer in 0,1, . . . , |R| − 1
• The algorithm moves through a sequence of views
• Views are numbered sequentially
• In view v , replica with identity v mod |R| is the primary and the

remaining replicas are backups

12 / 30

PBFT Algorithm
• Rough outline

1. A client sends a request to the primary to invoke a state machine operation
2. Primary multicasts the request to the backups
3. Replicas execute the request and send a reply to the client
4. The client waits for f + 1 replies from different replicas with same result

• Three phases in case of non-faulty primary
• Pre-prepare
• Prepare
• Commit

• Pre-prepare phase
• Primary in view v receives client request m
• Primary assigns a sequence number n to m
• Primary multicasts PRE-PREPARE message with m, v , n to all backups
• Backup accepts PRE-PREPARE message if

• it is in view v and
• it has not accepted a PRE-PREPARE message for view v and

sequence number n with different request

13 / 30

PBFT Prepare Phase
• Prepare

• If backup i accepts the PRE-PREPARE message, it enters the prepare
phase

• Multicasts PREPARE message with v , n,m, i to all other replicas
• Adds both PRE-PREPARE and PREPARE messages to its log

• Define predicate prepared(m, v ,n, i) to be true if and only if
replica i has inserted in its log

1. a PRE-PREPARE message with m, v , n, and
2. at least 2f PREPARE messages for m, v , n.

• Guarantees that non-faulty replicas agree on total order of
requests in a view
• Invariant: If prepared(m, v , n, i) is true, then prepared(m′, v , n, j) is false

for any non-faulty replica j where m′ 6= m
• prepared(m, v , n, i) true =⇒ at least f + 1 non-faulty replicas have sent

PREPARE or PRE-PREPARE messages for m, v , n
• prepared(m′, v , n, j) true =⇒ 2f + 1 replicas have sent PREPARE or

PRE-PREPARE messages for m′, v , n to j
• At least one non-faulty replica has sent conflicting PREPAREs or

PRE-PREPAREs =⇒ contradiction

14 / 30

PBFT Commit Phase
• Commit

• When prepared(m, v , n, i) becomes true, replica i multicasts a COMMIT
message for m, v , n, i

• Replicas accept COMMIT messages which match their view and insert
them into their logs

• Replica i executes the operation requested by m when
committed-local(m, v , n, i) becomes true and all requests with lower
sequence number have been executed

• committed-local(m, v ,n, i) is true if and only if
1. prepared(m, v , n, i) is true and
2. replica i has accepted 2f + 1 COMMITs (including its own) for

m, v , n

• committed(m, v ,n) is true if and only if prepared(m, v ,n, j) is
true for all j in some set of f + 1 non-faulty replicas

• Invariant: If committed-local(m, v ,n, i) is true for some
non-faulty i , then committed(m, v ,n) is true

• At non-faulty replicas i and j , committed-local(m, v ,n, i) and
committed-local(m′, v ,n, j) cannot both be true for m 6= m′

15 / 30

PBFT View Change

• View changes are required when primary replica fails
• View-change algorithm

1. If client does not receive replies before a timeout, it broadcasts the request
to all replicas

2. If request has already been processed, the replicas resend the reply to
client

3. If request was not received from primary, a backup starts a timer upon
receiving the client’s request

4. If the timer expires while waiting for same request from primary, the backup
multicasts a view-change message to all replicas

5. When primary of view v + 1 receives 2f view-change messages, it
multicasts a new-view message and enters view v + 1

16 / 30

Federated Byzantine Agreement

Federated Byzantine Agreement
• Definition: An federated Byzantine agreement system (FBAS) is a pair 〈V,Q〉

comprising of a set of nodes V and a quorum function Q : V 7→ 22V \ {∅}
specifying one or more quorum slices for each node, where a node belongs to all
of its own quorum slices, i.e. ∀v ∈ V, ∀q ∈ Q(v), v ∈ q.

• Example

v1

v3v2

v4

Q(v1) = {{v1, v2, v3}}

Q(v2) = Q(v3) = Q(v4) = {{v2, v3, v4}}

• Definition: A set of nodes U ⊆ V in FBAS 〈V,Q〉 is a quorum iff U 6= ∅ and U
contains a slice for each member, i.e. ∀v ∈ U,∃q ∈ Q(v) such that q ⊆ U.

• A quorum of nodes is sufficient to reach agreement

18 / 30

Tiered FBAS Example

v9 v10

v5 v6 v7 v8

v1 v2 v3 v4

2/4

2/4

3/4

Slices are self + any other
two out of {v1, v2, v3, v4}

Slices are self + any
two top tier nodes

Slices are self + any
two middle tier nodes

Possible quorums?

19 / 30

Safety and Liveness

• FBA systems attempt consensus in a slot
• A node applies update x in slot i when

1. it has applied updates in all previous slots and
2. it believes all non-faulty nodes will eventually agree on x for slot i .

The node is said to have externalized x in slot i .
• Definition: A set of nodes in an FBAS enjoy safety if no two of

them ever externalize different values for the same slot
• Well-behaved nodes = obey protocol
• Ill-behaved nodes = Byzantine failures
• Well-behaved nodes can also fail (be blocked or diverge)
• Definition: A node in an FBAS enjoys liveness if it can

externalize new values without the participation of any failed
nodes

• Given a specific 〈V,Q〉 and an ill-behaved subset of V, what is
the best any FBA protocol can do?

20 / 30

Quorum Intersection

• Definition: An FBAS enjoys quorum intersection if and only if
any two quorums share a node.

• No protocol can guarantee safety in the absence of quorum
intersection

• Example of quorum non-intersection

v3v2

v1

v6v5

v4

Q(v1) = Q(v2) = Q(v3)
= {{v1, v2, v3}}

Q(v4) = Q(v5) = Q(v6)
= {{v4, v5, v6}}

• {v1, v2, v3} and {v4, v5, v6} are two disjoint quorums; can approve
contradictory statements

21 / 30

Quorum Intersection at Ill-Behaved Nodes

v3v2

v1

v6v5

v4v7

Q(v1) = Q(v2) = Q(v3)
= {{v1, v2, v3, v7}}

Q(v4) = Q(v5) = Q(v6)
= {{v4, v5, v6, v7}}

Q(v7) = {{v1, v2, v3, v7}, {v4, v5, v6, v7}}

• If v7 is ill-behaved, the quorums are effectively disjoint
• Necessary property for safety: Well-behaved nodes enjoy

quorum intersection after deleting ill-behaved nodes
• Definition: If 〈V,Q〉 is an FBAS and B ⊆ V is a set of nodes, to

delete B is to compute the modified FBAS 〈V,Q〉B = 〈V \ B,QB〉
where QB = {q \ B | q ∈ Q(v)}

22 / 30

Dispensible Sets
• Safety and liveness of nodes outside a DSet can be guaranteed

irrespective of the behaviour of nodes in the DSet
• Definition: Let 〈V,Q〉 be an FBAS and B ⊆ V be a set of nodes.

We say B is a dispensible set or DSet if and only if
1. 〈V,Q〉B enjoys quorum intersection, and
2. either V \ B is a quorum in 〈V,Q〉 or B = V.

Condition 1 = quorum intersection despite B
Condition 2 = quorum availability despite B

v9 v10

v5 v6 v7 v8

v1 v2 v3 v4

2/4

2/4

3/4

{v1} is a DSet

{v9} is a DSet

{v5, v6} is not a DSet

23 / 30

Intact and Befouled Nodes

• Definition: A node v in an FBAS is intact iff there exists a DSet
B containing all ill-behaved nodes such that v /∈ B

• An optimal FBAS should guarantee safety/liveness for every
intact node

• Definition: A node v in an FBAS is befouled iff it is not intact
• Theorem: In an FBAS with quorum intersection, the set of

befouled nodes is a DSet
• Proof follows from a theorem which says that intersection of DSets

is a DSet in an FBAS with quorum intersection

24 / 30

Federated Voting

Voting and Ratification
• Definition: A node v votes for a statement A if and only if

1. v asserts A is valid and consistent with all statements v has
accepted, and

2. v asserts that it has never voted against A and promises to not vote
against A in the future.

• Definition: A quorum UA ratifies a statement A if and only if
every member of UA votes for A. A node v ratifies A iff v is a
member of a quorum UA that ratifies A.

• Theorems
• Two contradictory statements A and Ā cannot both be ratified in an

FBAS that enjoys quorum intersection and contains no ill-behaved
nodes.

• Let 〈V,Q〉 be an FBAS enjoying quorum intersection despite B
where B contains all ill-behaved nodes. Let v1, v2 /∈ B. If v1 ratifies
A, then v2 cannot ratify Ā.

• Two intact nodes in an FBAS with quorum intersection cannot ratify
contradictory statements.

26 / 30

Accepting Statements
• Definition: Let v ∈ V be a node in FBAS 〈V,Q〉. A set B ⊆ V is v -blocking iff it

overlaps with every one of v ’s slices
• Theorem: Let B ⊆ V be a set of nodes in FBAS 〈V,Q〉. 〈V,Q〉 enjoys quorum

availability despite B iff B is not v -blocking for any v ∈ V \ B.
• Corollary: The DSet of befouled nodes is not v -blocking for any intact v in an

FBAS enjoying quorum intersection.

• Definition: An FBAS node v accepts a statement A iff it has never accepted a
statement contradicting A and it determines that either

1. There exists a quorum U such that v ∈ U and each each member of U
either voted for A or claims to accept A, or

2. each member of a v -blocking set claims to accept A.
• Second condition allows v to vote for one statement but later accept a

contradictory one
• Theorem: Two intact nodes in an FBAS that enjoys quorum intersection cannot

accept contradictory statements.
• Acceptance of a statement at an intact node does not guarantee that all other

intact nodes will accept

27 / 30

Confirming Statements
• Definition: A quorum UA in an FBAS confirms a statement A if and only if every

member of UA claims to accept A. A node v confirms A if and only if it is in such
a quorum.

• Theorem: Let 〈V,Q〉 be an FBAS enjoying quorum intersection despite B where
B contains all ill-behaved nodes. Let v1, v2 /∈ B. If v1 confirms A, then v2 cannot
confirm Ā.

• Theorem: If an intact node in an FBAS 〈V,Q〉 with quorum intersection confirms
a statement A, then, whatever subsequently transpires, once sufficient messages
are delivered and processed, every intact node with accept and confirm A.

• But the protocol may get stuck before an intact node confirmation
• Need multiple rounds for liveness

28 / 30

Stellar Consensus Protocol
• Two subprotocols

• Nomination protocol
• Ballot protocol

• Nodes nominate candidate values for a slot which will converge
on a composite value
• Composite value = Union of transaction sets proposed

• Ballot protocol uses federated voting to commit and abort ballots
of composite values

29 / 30

References
• SCP talk https://www.youtube.com/watch?v=vmwnhZmEZjc
• SCP white paper https:

//www.stellar.org/papers/stellar-consensus-protocol.pdf

• Paxos Made Simple, Leslie Lamport,
https://lamport.azurewebsites.net/pubs/paxos-simple.pdf

• How to Build a Highly Available System Using Consensus, B. W. Lampson,
https://doi.org/10.1007/3-540-61769-8_1

• PBFT paper http://www.pmg.csail.mit.edu/papers/osdi99.pdf

30 / 30

https://www.youtube.com/watch?v=vmwnhZmEZjc
https://www.stellar.org/papers/stellar-consensus-protocol.pdf
https://www.stellar.org/papers/stellar-consensus-protocol.pdf
https://lamport.azurewebsites.net/pubs/paxos-simple.pdf
https://doi.org/10.1007/3-540-61769-8_1
http://www.pmg.csail.mit.edu/papers/osdi99.pdf

	Paxos
	Practical Byzantine Fault Tolerance
	Federated Byzantine Agreement
	Federated Voting

