Zero Knowledge Proofs

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

October 16, 2018

Zero Knowledge Proofs

- Proofs that yield nothing beyond the validity of an assertion
- Examples of assertions
 - I know the discrete log of a group element wrt a generator
 - I know an isomorphism between two graphs G₁, G₂
- Proofs are a sequence of statements each of which is an axiom or follows from axioms via derivation rules
 - Traditional proofs do not have explicit provers and verifiers
- ZKPs involve explicit interaction between prover and verifier
- Prover and verifier will be modeled as algorithms or machines
 - Verifier is assumed to be probabilistic polynomial-time (PPT)
 - Prover may or may not be PPT

Knowledge vs Information

- In information theory, entropy is used to quantify information
- Entropy of a discrete random variable *X* defined over an alphabet *X* is

$$H(X) = -\sum_{x \in \mathcal{X}} p(x) \log p(x)$$

- Knowledge is related to computational difficulty, whereas information is not
 - Suppose Alice and Bob know Alice's public key
 - Alice sends her private key to Bob
 - Bob has not gained new information (in the information-theoretic sense)
 - But Bob now knows a quantity he could not have calculated by himself
- Knowledge is related to publicly known objects, whereas information relates to private objects
 - Suppose Alice tosses a fair coin and sends the outcome to Bob
 - Bob gains one bit of information (in the information-theoretic sense)
 - We say Bob has not gained any knowledge as he could have tossed a coin himself

Modeling Assertions and Proofs

- The complexity class \mathcal{NP} captures the asymmetry between proof generation and verification
- A language is a subset of {0, 1}*
- Each language *L* ∈ *NP* has a polynomial-time verification procedure for proofs of statements "*x* ∈ *L*"
 - Example: L is the encoding of pairs of finite isomorphic graphs
- Let $R \subset \{0,1\}^* \times \{0,1\}^*$ be a relation
- *R* is said to be polynomial-time-recognizable if the assertion " $(x, y) \in R$ " can be checked in time poly(|x|, |y|)
- Each $L \in \mathcal{NP}$ is given by a PTR relation R_L such that

$$L = \{x \mid \exists y \text{ such that } (x, y) \in R_L\}$$

and $(x, y) \in R_L$ only if $|y| \le poly(|x|)$

• Any y for which $(x, y) \in R_L$ is a proof of the assertion " $x \in L$ "

Interactive Proof Systems

- Let $\langle A, B \rangle(x)$ denote the output of B when interacting with A on common input x
- Output 1 is interpreted as "accept" and 0 is interpreted as "reject"

Definition

A pair of interactive machines (P, V) is called an **interactive proof system for a language** *L* if machine *V* is polynomial-time and the following conditions hold:

• **Completeness**: For every $x \in L$,

$$\Pr\left[\langle P, V \rangle(x) = 1\right] \geq \frac{2}{3}$$

• **Soundness**: For every $x \notin L$ and every interactive machine *B*,

$$\Pr\left[\langle B, V \rangle(x) = 1\right] \leq \frac{1}{3}$$

- Remarks
 - Soundness condition refers to any possible prover while completeness condition refers only to the prescribed prover
 - Prescribed prover is allowed to fail with probability $\frac{1}{3}$
 - Arbitrary provers are allowed to succeed with probability ¹/₃
 - These probabilities can be made arbitrarily small by repeating the interaction

Interactive Proof Example

- Suppose Peggy claims that Pepsi in large bottles tastes different than Pepsi in small bottles
- Victor challenges Peggy to prove her claim
- · Peggy and Virgil execute the following protocol
 - Victor asks Peggy to leave the room
 - He selects either a large bottle or a small bottle randomly and pours some Pepsi into a glass
 - Peggy is called into the room and asked to tell which bottle the Pepsi came from by tasting it
 - Victor records Peggy's response and the above steps are repeated one more time
 - If Peggy answers correctly both times, Victor accepts the claim
- If the claim is correct, $\Pr[\langle P, V \rangle(x) = 1] = 1 \ge \frac{2}{3}$
- If the claim is wrong, $\Pr[\langle P, V \rangle(x) = 1] = \frac{1}{4} \le \frac{1}{3}$

Interactive Proof for Graph Non-Isomorphism

- Graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are isomorphic if there exists a bijection $\pi : V_1 \mapsto V_2$ such that $(u, v) \in E_1 \iff (\pi(u), \pi(v)) \in E_2$
- Graphs G₁ and G₂ are non-isomorphic if no such bijection exists
- Prover and verifier execute the following protocol
 - Verifier picks σ ∈ {1,2} randomly and a random permutation π from the set of all permutations over V_σ
 - Verifier calculates $F = \{(\pi(u), \pi(v) \mid (u, v) \in E\}$ and sends the graph $G' = (V_{\sigma}, F)$ to prover
 - Prover finds $au \in \{1,2\}$ such that G' is isomorphic to $G_{ au}$ and sends au to verifier
 - If $\tau = \sigma$, verifier accepts claim. Otherwise, it rejects.
- Remarks
 - Verifier is a PPT machine but no known PPT implementation for prover
 - If G₁ and G₂ are not isomorphic, then verifier always accepts
 - If G_1 and G_2 are isomorphic, then verifier rejects with probability at least $\frac{1}{2}$
 - Repeated interactions can make false acceptance probability arbitrarily small

Zero Knowledge Interactive Proofs

- Consider an interactive proof system (P, V) for a language L
 - In an interactive proof, we need to guard against a malicious prover
 - To guarantee zero knowledge, we need to guard against a malicious verifier
- · Recall that knowledge is related to computational difficulty
- Informal definition
 - An interactive proof system is **zero knowledge** if whatever can be efficiently computed **after interaction** with *P* on input *x* can also be efficiently computed from *x* (without interaction)
- Formal definition (ideal)
 - We say (P, V) is **perfect zero knowledge** if for every PPT interactive machine V^* there exists a PPT algorithm M^* such that for every $x \in L$ the random variables $\langle P, V^* \rangle(x)$ and $M^*(x)$ are **identically distributed**
 - M* is called a simulator for the interaction of V* with P
- · Unfortunately, the above definition is too strict
- A relaxed definition is used instead

Perfect Zero Knowledge

Definition

Let (P, V) be an interactive proof system for a language *L*. We say that (P, V) is **perfect zero knowledge** if for every PPT interactive machine V^* there exists a PPT algorithm M^* such that for every $x \in L$ the following two conditions hold:

- 1. With probability at most $\frac{1}{2}$, machine M^* outputs a special symbol \perp
- Let m*(x) be the random variable describing the distribution of M*(x) conditioned on M*(x) ≠⊥. Then the random variables ⟨P, V*⟩(x) and m*(x) are identically distributed

Remarks

- M^* is called a **perfect simulator** for the interaction of V^* with P
- By repeated interactions, the probability that the simulator fails to generate the identical distribution can be made negligible
- Alternative formulation: Replace $\langle P, V^* \rangle(x)$ with view $_{V^*}^P(x)$
 - A verifier's view consists of messages it receives and any randomness it generates
 - Simulator *M** has to change accordingly

ZK Proof for Graph Isomorphism

- An isomorphism ϕ between graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ exists
- Prover and verifier execute the following protocol
 - Prover picks a random permutation π from the set of permutations of V₂
 - Prover calculates $F = \{(\pi(u), \pi(v) \mid (u, v) \in E_2\}$ and sends the graph $G' = (V_2, F)$ to verifier
 - Verifier picks $\sigma \in \{1, 2\}$ randomly and sends it to prover
 - If σ = 2, then prover sends π to the verifier. Otherwise, it sends π ∘ φ to the verifier where (π ∘ φ) (ν) is defined as π (φ(ν))
 - If the received mapping is an isomorphism between G_σ and G', the verifier accepts. Otherwise, it rejects
- Remarks
 - Verifier is a PPT machine. If ϕ is known to prover, it is a PPT machine
 - If G₁ and G₂ are isomorphic, then verifier always accepts
 - If G_1 and G_2 are not isomorphic, then verifier rejects with probability $\frac{1}{2}$
 - The prover is perfect zero knowledge (to be argued)

Simulator for Graph Isomorphism Transcript

- For an arbitrary PPT verifier V^* , view $_{V^*}^P(x) = \langle G', \sigma, \psi \rangle$ where ψ is an isomorphism between G_{σ} and G'
- The simulator *M*^{*} uses *V*^{*} as a subroutine
- On input (G₁, G₂), simulator randomly picks τ ∈ {1,2} and generates a random isomorphic copy G^{''} of G_τ
 - Note that G'' is identically distributed to G'
- Simulator gives G'' to V^* and receives $\sigma \in \{1, 2\}$ from it
 - V^* is asking for an isomorphism from G_σ to G''
- If $\sigma = \tau$, then the simulator can provide the isomorphism $\pi : G_{\tau} \mapsto G''$
- If $\sigma \neq \tau$, then the simulator outputs \perp
- If the simulator does not output \bot , then $\langle G'', \tau, \pi \rangle$ is identically distributed to $\langle G', \sigma, \psi \rangle$

References

• Sections 4.1, 4.2, 4.3 of *Foundations of Cryptography, Volume I* by Oded Goldreich