Zero Knowledge Proofs

Saravanan Vijayakumaran
sarva@ee.iitb.ac.in

Department of Electrical Engineering
Indian Institute of Technology Bombay

October 16, 2018

mailto:sarva@ee.iitb.ac.in

Zero Knowledge Proofs

Proofs that yield nothing beyond the validity of an assertion
Examples of assertions

e | know the discrete log of a group element wrt a generator
e | know an isomorphism between two graphs Gy, Gz

Proofs are a sequence of statements each of which is an axiom
or follows from axioms via derivation rules

¢ Traditional proofs do not have explicit provers and verifiers
ZKPs involve explicit interaction between prover and verifier
Prover and verifier will be modeled as algorithms or machines

o Verifier is assumed to be probabilistic polynomial-time (PPT)
e Prover may or may not be PPT

12

Knowledge vs Information

In information theory, entropy is used to quantify information

Entropy of a discrete random variable X defined over an
alphabet X is

— > p(x)log p(x

XeX

Knowledge is related to computational difficulty, whereas
information is not

Suppose Alice and Bob know Alice’s public key

Alice sends her private key to Bob

Bob has not gained new information (in the information-theoretic
sense)

But Bob now knows a quantity he could not have calculated by
himself

Knowledge is related to publicly known objects, whereas
information relates to private objects

e Bob gains one bit of information (in the information-theoretic sense)

Suppose Alice tosses a fair coin and sends the outcome to Bob

We say Bob has not gained any knowledge as he could have
tossed a coin himself

12

Modeling Assertions and Proofs

The complexity class NP captures the asymmetry between
proof generation and verification

A language is a subset of {0,1}*

Each language L € NP has a polynomial-time verification
procedure for proofs of statements “x € L”

e Example: L is the encoding of pairs of finite isomorphic graphs
Let R c {0,1}* x {0,1}* be a relation

R is said to be polynomial-time-recognizable if the assertion
“(x,y) € R’ can be checked in time poly(|x|,|y|)

Each L € NP is given by a PTR relation R, such that
L ={x |3y such that (x,y) € R}

and (x, y) € R only if [y| < poly(|x|)
Any y for which (x, y) € Ry is a proof of the assertion “x € L”

12

Interactive Proof Systems

e Let (A, B)(x) denote the output of B when interacting with A on common input x
e Output 1 is interpreted as “accept” and 0 is interpreted as “reject”
Definition
A pair of interactive machines (P, V) is called an interactive proof system for a
language L if machine V is polynomial-time and the following conditions hold:

e Completeness: For every x € L,

Pri(P,V)(x) =1] >

Wl N

e Soundness: For every x ¢ L and every interactive machine B,

Pr(B,V)() =11 < o

e Remarks

e Soundness condition refers to any possible prover while completeness
condition refers only to the prescribed prover

e Prescribed prover is allowed to fail with probability %

e Arbitrary provers are allowed to succeed with probability %

e These probabilities can be made arbitrarily small by repeating the
interaction

12

Interactive Proof Example

e Suppose Peggy claims that Pepsi in large bottles tastes different
than Pepsi in small bottles

e Victor challenges Peggy to prove her claim
e Peggy and Virgil execute the following protocol

Victor asks Peggy to leave the room

He selects either a large bottle or a small bottle randomly and
pours some Pepsi into a glass

Peggy is called into the room and asked to tell which bottle the
Pepsi came from by tasting it

Victor records Peggy’s response and the above steps are repeated
one more time

If Peggy answers correctly both times, Victor accepts the claim

o If the claim is correct, Pr[(P, V)(x) =1] =1 > £

o If the claim is wrong, Pr[(P, V)(x) =1] = 1 <

1
3

12

Interactive Proof for Graph Non-lsomorphism

e Graphs Gy = (V4, Ey) and Go = (V», Ep) are isomorphic if there exists a
bijection 7 : V4 — Va such that (u,v) € E; <= (n(u),n(v)) € E

e Graphs G; and G, are non-isomorphic if no such bijection exists
e Prover and verifier execute the following protocol

e Verifier picks o € {1,2} randomly and a random permutation 7 from the set
of all permutations over V,,

e Verifier calculates F = {(w(u),n(v) | (u,v) € E} and sends the graph
G' = (Vs, F) to prover

e Prover finds 7 € {1, 2} such that G’ is isomorphic to G, and sends 7 to
verifier

e |f 7 = o, verifier accepts claim. Otherwise, it rejects.

e Remarks

Verifier is a PPT machine but no known PPT implementation for prover

If Gy and Go are not isomorphic, then verifier always accepts

If Gy and G, are isomorphic, then verifier rejects with probability at least %
Repeated interactions can make false acceptance probability arbitrarily
small

Zero Knowledge Interactive Proofs

Consider an interactive proof system (P, V) for a language L

¢ In an interactive proof, we need to guard against a malicious prover
¢ To guarantee zero knowledge, we need to guard against a
malicious verifier

Recall that knowledge is related to computational difficulty
Informal definition

¢ An interactive proof system is zero knowledge if whatever can be
efficiently computed after interaction with P on input x can also
be efficiently computed from x (without interaction)

Formal definition (ideal)

o We say (P, V) is perfect zero knowledge if for every PPT
interactive machine V* there exists a PPT algorithm M* such that
for every x € L the random variables (P, V*)(x) and M*(x) are
identically distributed

e M* is called a simulator for the interaction of V* with P

Unfortunately, the above definition is too strict
A relaxed definition is used instead

12

Perfect Zero Knowledge

Definition

Let (P, V) be an interactive proof system for a language L. We say that (P, V) is
perfect zero knowledge if for every PPT interactive machine V* there exists a PPT
algorithm M* such that for every x € L the following two conditions hold:

1. With probability at most % machine M* outputs a special symbol L

2. Let m*(x) be the random variable describing the distribution of M*(x)
conditioned on M*(x) #_L. Then the random variables (P, V*)(x) and m*(x) are
identically distributed

e Remarks

o M~ is called a perfect simulator for the interaction of V* with P
o By repeated interactions, the probability that the simulator fails to
generate the identical distribution can be made negligible

« Alternative formulation: Replace (P, V*)(x) with view}. (x)

o A verifier's view consists of messages it receives and any
randomness it generates
e Simulator M* has to change accordingly

ZK Proof for Graph Isomorphism

e Anisomorphism ¢ between graphs G; = (Vi, Eq) and Go = (Vs, Ey) exists

e Prover and verifier execute the following protocol

e Prover picks a random permutation 7 from the set of permutations of V;
e Prover calculates F = {(w(u),w(v) | (u,v) € Ex} and sends the graph

G’ = (Vo, F) to verifier

e Verifier picks o € {1,2} randomly and sends it to prover
e |f o = 2, then prover sends = to the verifier. Otherwise, it sends 7 o ¢ to the

verifier where (7 o ¢) (v) is defined as = (¢(v))
If the received mapping is an isomorphism between G, and G, the verifier
accepts. Otherwise, it rejects

e Remarks

Verifier is a PPT machine. If ¢ is known to prover, it is a PPT machine
If Gy and G are isomorphic, then verifier always accepts

If Gy and Go are not isomorphic, then verifier rejects with probability 15
The prover is perfect zero knowledge (to be argued)

10/12

Simulator for Graph Isomorphism Transcript

e For an arbitrary PPT verifier V*, viewﬁ* (x) = (G, 0,%) where ¢ is an
isomorphism between G, and G’

e The simulator M* uses V* as a subroutine

® Oninput (Gy, Gz), simulator randomly picks 7 € {1,2} and generates a random
isomorphic copy G” of G-

e Note that G” is identically distributed to G’
e Simulator gives G to V* and receives o € {1,2} from it

e V* is asking for an isomorphism from G, to G”
e |f o = 7, then the simulator can provide the isomorphism = : G — G”
e |f o # 7, then the simulator outputs L

e [f the simulator does not output L, then (G”, 7, w) is identically distributed to
(G, 0,7)

11/12

References

e Sections 4.1, 4.2, 4.3 of Foundations of Cryptography, Volume | by Oded
Goldreich

12/12

