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Zero Knowledge Proofs

• Proofs that yield nothing beyond the validity of an assertion
• Examples of assertions

• I know the discrete log of a group element wrt a generator
• I know an isomorphism between two graphs G1,G2

• Proofs are a sequence of statements each of which is an axiom
or follows from axioms via derivation rules
• Traditional proofs do not have explicit provers and verifiers

• ZKPs involve explicit interaction between prover and verifier
• Prover and verifier will be modeled as algorithms or machines

• Verifier is assumed to be probabilistic polynomial-time (PPT)
• Prover may or may not be PPT
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Knowledge vs Information
• In information theory, entropy is used to quantify information
• Entropy of a discrete random variable X defined over an

alphabet X is
H(X ) = −

∑
x∈X

p(x) log p(x)

• Knowledge is related to computational difficulty, whereas
information is not
• Suppose Alice and Bob know Alice’s public key
• Alice sends her private key to Bob
• Bob has not gained new information (in the information-theoretic

sense)
• But Bob now knows a quantity he could not have calculated by

himself
• Knowledge is related to publicly known objects, whereas

information relates to private objects
• Suppose Alice tosses a fair coin and sends the outcome to Bob
• Bob gains one bit of information (in the information-theoretic sense)
• We say Bob has not gained any knowledge as he could have

tossed a coin himself
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Modeling Assertions and Proofs

• The complexity class NP captures the asymmetry between
proof generation and verification

• A language is a subset of {0,1}∗

• Each language L ∈ NP has a polynomial-time verification
procedure for proofs of statements “x ∈ L”
• Example: L is the encoding of pairs of finite isomorphic graphs

• Let R ⊂ {0,1}∗ × {0,1}∗ be a relation
• R is said to be polynomial-time-recognizable if the assertion

“(x , y) ∈ R” can be checked in time poly(|x |, |y |)
• Each L ∈ NP is given by a PTR relation RL such that

L = {x | ∃y such that (x , y) ∈ RL}

and (x , y) ∈ RL only if |y | ≤ poly(|x |)
• Any y for which (x , y) ∈ RL is a proof of the assertion “x ∈ L”
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Interactive Proof Systems
• Let 〈A,B〉(x) denote the output of B when interacting with A on common input x
• Output 1 is interpreted as “accept” and 0 is interpreted as “reject”

Definition
A pair of interactive machines (P,V ) is called an interactive proof system for a
language L if machine V is polynomial-time and the following conditions hold:
• Completeness: For every x ∈ L,

Pr [〈P,V 〉(x) = 1] ≥
2
3

• Soundness: For every x /∈ L and every interactive machine B,

Pr [〈B,V 〉(x) = 1] ≤
1
3

• Remarks
• Soundness condition refers to any possible prover while completeness

condition refers only to the prescribed prover
• Prescribed prover is allowed to fail with probability 1

3
• Arbitrary provers are allowed to succeed with probability 1

3
• These probabilities can be made arbitrarily small by repeating the

interaction
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Interactive Proof Example

• Suppose Peggy claims that Pepsi in large bottles tastes different
than Pepsi in small bottles

• Victor challenges Peggy to prove her claim
• Peggy and Virgil execute the following protocol

• Victor asks Peggy to leave the room
• He selects either a large bottle or a small bottle randomly and

pours some Pepsi into a glass
• Peggy is called into the room and asked to tell which bottle the

Pepsi came from by tasting it
• Victor records Peggy’s response and the above steps are repeated

one more time
• If Peggy answers correctly both times, Victor accepts the claim

• If the claim is correct, Pr [〈P,V 〉(x) = 1] = 1 ≥ 2
3

• If the claim is wrong, Pr [〈P,V 〉(x) = 1] = 1
4 ≤

1
3
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Interactive Proof for Graph Non-Isomorphism
• Graphs G1 = (V1,E1) and G2 = (V2,E2) are isomorphic if there exists a

bijection π : V1 7→ V2 such that (u, v) ∈ E1 ⇐⇒ (π(u), π(v)) ∈ E2

• Graphs G1 and G2 are non-isomorphic if no such bijection exists

• Prover and verifier execute the following protocol

• Verifier picks σ ∈ {1, 2} randomly and a random permutation π from the set
of all permutations over Vσ

• Verifier calculates F = {(π(u), π(v) | (u, v) ∈ E} and sends the graph
G′ = (Vσ ,F ) to prover

• Prover finds τ ∈ {1, 2} such that G′ is isomorphic to Gτ and sends τ to
verifier

• If τ = σ, verifier accepts claim. Otherwise, it rejects.

• Remarks

• Verifier is a PPT machine but no known PPT implementation for prover
• If G1 and G2 are not isomorphic, then verifier always accepts
• If G1 and G2 are isomorphic, then verifier rejects with probability at least 1

2
• Repeated interactions can make false acceptance probability arbitrarily

small
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Zero Knowledge Interactive Proofs
• Consider an interactive proof system (P,V ) for a language L

• In an interactive proof, we need to guard against a malicious prover
• To guarantee zero knowledge, we need to guard against a

malicious verifier

• Recall that knowledge is related to computational difficulty
• Informal definition

• An interactive proof system is zero knowledge if whatever can be
efficiently computed after interaction with P on input x can also
be efficiently computed from x (without interaction)

• Formal definition (ideal)
• We say (P,V ) is perfect zero knowledge if for every PPT

interactive machine V ∗ there exists a PPT algorithm M∗ such that
for every x ∈ L the random variables 〈P,V ∗〉(x) and M∗(x) are
identically distributed

• M∗ is called a simulator for the interaction of V ∗ with P

• Unfortunately, the above definition is too strict
• A relaxed definition is used instead
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Perfect Zero Knowledge
Definition
Let (P,V ) be an interactive proof system for a language L. We say that (P,V ) is
perfect zero knowledge if for every PPT interactive machine V∗ there exists a PPT
algorithm M∗ such that for every x ∈ L the following two conditions hold:

1. With probability at most 1
2 , machine M∗ outputs a special symbol ⊥

2. Let m∗(x) be the random variable describing the distribution of M∗(x)
conditioned on M∗(x) 6=⊥. Then the random variables 〈P,V∗〉(x) and m∗(x) are
identically distributed

• Remarks
• M∗ is called a perfect simulator for the interaction of V ∗ with P
• By repeated interactions, the probability that the simulator fails to

generate the identical distribution can be made negligible

• Alternative formulation: Replace 〈P,V ∗〉(x) with viewP
V∗(x)

• A verifier’s view consists of messages it receives and any
randomness it generates

• Simulator M∗ has to change accordingly
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ZK Proof for Graph Isomorphism
• An isomorphism φ between graphs G1 = (V1,E1) and G2 = (V2,E2) exists

• Prover and verifier execute the following protocol

• Prover picks a random permutation π from the set of permutations of V2
• Prover calculates F = {(π(u), π(v) | (u, v) ∈ E2} and sends the graph

G′ = (V2,F ) to verifier
• Verifier picks σ ∈ {1, 2} randomly and sends it to prover
• If σ = 2, then prover sends π to the verifier. Otherwise, it sends π ◦ φ to the

verifier where (π ◦ φ) (v) is defined as π (φ(v))
• If the received mapping is an isomorphism between Gσ and G′, the verifier

accepts. Otherwise, it rejects

• Remarks

• Verifier is a PPT machine. If φ is known to prover, it is a PPT machine
• If G1 and G2 are isomorphic, then verifier always accepts
• If G1 and G2 are not isomorphic, then verifier rejects with probability 1

2
• The prover is perfect zero knowledge (to be argued)
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Simulator for Graph Isomorphism Transcript
• For an arbitrary PPT verifier V∗, viewP

V∗ (x) = 〈G′, σ, ψ〉 where ψ is an
isomorphism between Gσ and G′

• The simulator M∗ uses V∗ as a subroutine

• On input (G1,G2), simulator randomly picks τ ∈ {1, 2} and generates a random
isomorphic copy G′′ of Gτ

• Note that G′′ is identically distributed to G′

• Simulator gives G′′ to V∗ and receives σ ∈ {1, 2} from it

• V∗ is asking for an isomorphism from Gσ to G′′

• If σ = τ , then the simulator can provide the isomorphism π : Gτ 7→ G′′

• If σ 6= τ , then the simulator outputs ⊥
• If the simulator does not output ⊥, then 〈G′′, τ, π〉 is identically distributed to
〈G′, σ, ψ〉
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