Zero Knowledge Succinct Noninteractive ARguments of Knowledge

Saravanan Vijayakumaran
sarva@ee.iitb.ac.in
Department of Electrical Engineering Indian Institute of Technology Bombay

October 26, 2018

zkSNARKs

- Arguments
- ZK proofs where soundness guarantee is required only against PPT provers
- Noninteractive
- Proof consists of a single message from prover to verifier
- Succinct
- Proof size is $\mathcal{O}(1)$
- Requires a trusted setup to generate a common reference string
- CRS size is linear in size of assertion being proved

Bilinear Pairings

- Let G and G_{T} be two cyclic groups of prime order q
- In practice, G is an elliptic curve group and G_{T} is subgroup of $\mathbb{F}_{p^{n}}$
- Let $G=\langle g\rangle$, i.e. $G=\left\{g^{\alpha} \mid \alpha \in \mathbb{Z}_{q}\right\}$
- A symmetric pairing is an efficient map e : $G \times G \mapsto G_{T}$ satisfying

1. Bilinearity: $\forall \alpha, \beta \in \mathbb{Z}_{q}$, we have $e\left(g^{\alpha}, g^{\beta}\right)=e(g, g)^{\alpha \beta}$
2. Non-degeneracy: $e(g, g)$ is not the identity in G_{T}

- Finding discrete logs is assumed to be difficult in both groups
- Pairings enable multiplication of secrets
- Decisional Diffie-Hellman Problem: Given x, y, z chosen uniformly from \mathbb{Z}_{q} and g^{x}, g^{y}, PPT adversary has to distinguish between $g^{x y}$ and g^{z}
- DDH problem is easy in G
- Computation DH problem (computing $g^{x y}$ from g^{x} and g^{y}) can be difficult

Applications of Pairings

- Three-party Diffie Hellman key agreement
- Three parties Alice, Bob, Carol have private-public key pairs $\left(a, g^{a}\right),\left(b, g^{b}\right),\left(c, g^{c}\right)$ where $G=\langle g\rangle$
- Alice sends g^{a} to the other two
- Bob sends g^{b} to the other two
- Carol sends g^{c} to the other two
- Each party can compute common key

$$
K=e(g, g)^{a b c}=e\left(g^{b}, g^{c}\right)^{a}=e\left(g^{a}, g^{c}\right)^{b}=e\left(g^{a}, g^{b}\right)^{c}
$$

- BLS Signature Scheme
- Suppose $H:\{0,1\}^{*} \mapsto G$ is a hash function
- Let $\left(x, g^{x}\right)$ be a private-public key pair
- BLS signature on message m is $\sigma=(H(m))^{x}$
- Verifier checks that $e(g, \sigma)=e\left(g^{x}, H(m)\right)$

Checking Polynomial Evaluation

- Prover knows a polynomial $p(x) \in \mathbb{F}_{q}[x]$ of degree d
- Verifier wants to check that prover computes $g^{p(s)}$ for some randomly chosen $s \in \mathbb{F}_{q}$
- Verifier does not care which $p(x)$ is used but cares about the evaluation point s
- Verifier sends $g^{s^{i}}, i=0,1,2, \ldots, d$ to prover
- If $p(x)=\sum_{i=0}^{d} p_{i} x^{i}$, prover can compute $g^{p(s)}$ as

$$
g^{p(s)}=\Pi_{i=0}^{d}\left(g^{s^{i}}\right)^{p_{i}}
$$

- But prover could have computed $g^{p(t)}$ for some $t \neq s$
- Verifier also sends $g^{\alpha s^{i}}, i=0,1,2, \ldots, d$ for some randomly chosen $\alpha \in \mathbb{F}_{q}^{*}$
- Prover can now compute $g^{\alpha p(s)}$
- Anyone can check that $e\left(g^{\alpha}, g^{p(s)}\right)=e\left(g^{\alpha p(s)}, g\right)$
- But why can't the prover cheat by returning $g^{p(t)}$ and $g^{\alpha p(t)}$?

Knowledge of Exponent Assumptions

- Knowledge of Exponent Assumption (KEA)
- Let G be a cyclic group of prime order p with generator g and let $\alpha \in \mathbb{Z}_{p}$
- Given g, g^{α}, suppose a PPT adversary can output c, \hat{c} such that $\hat{c}=c^{\alpha}$
- The only way he can do so is by choosing some $\beta \in \mathbb{Z}_{p}$ and setting $c=g^{\beta}$ and $\hat{c}=\left(g^{\alpha}\right)^{\beta}$
- q-Power Knowledge of Exponent (q-PKE) Assumption
- Let G be a cyclic group of prime order p with a pairing $e: G \times G \mapsto G_{T}$
- Let $G=\langle g\rangle$ and α, s be randomly chosen from \mathbb{Z}_{p}^{*}
- Given $g, g^{s}, g^{s^{2}}, \ldots, g^{s^{q}}, g^{\alpha}, g^{\alpha s}, g^{\alpha s^{2}}, \ldots, g^{\alpha s^{q}}$, suppose a PPT adversary can output c, \hat{c} such that $\hat{c}=c^{\alpha}$
- The only way he can do so is by choosing some $a_{0}, a_{1}, \ldots, a_{q} \in \mathbb{Z}_{p}$ and setting $c=\Pi_{i=0}^{q}\left(g^{s^{i}}\right)^{a_{i}}$ and $\hat{c}=\Pi_{i=0}^{q}\left(g^{\alpha s^{i}}\right)^{a_{i}}$
- Under the q-PKE assumption, the polynomial evaluation verifier is convinced of the polynomial evaluation point
- Prover can hide $g^{p(s)}$ by sending $g^{\beta+p(s)}, g^{\alpha(\beta+p(s))}$

Quadratic Arithmetic Programs

- For a field \mathbb{F}, an \mathbb{F}-arithmetic circuit has inputs and outputs from \mathbb{F}
- Gates can perform addition and multiplication

Definition

A QAP Q over a field \mathbb{F} contains three sets of $m+1$ polynomials $\mathcal{V}=\left\{v_{k}(x)\right\}$, $\mathcal{W}=\left\{w_{k}(x)\right\}, \mathcal{Y}=\left\{y_{k}(x)\right\}$, for $k \in\{0,1, \ldots, m\}$, and a target polynomial $t(x)$.

Suppose $F: \mathbb{F}^{n} \mapsto \mathbb{F}^{n^{\prime}}$ where $N=n+n^{\prime}$. We say that Q computes F if:
$\left(c_{1}, c_{2}, \ldots, c_{N}\right) \in \mathbb{F}^{N}$ is a valid assignment of F 's inputs and outputs, if and only if there exist coefficients $\left(c_{N+1}, \ldots, c_{m}\right)$ such that $t(x)$ divides $p(x)$ where
$p(x)=\left(v_{0}(x)+\sum_{k=1}^{m} c_{k} v_{k}(x)\right) \cdot\left(w_{0}(x)+\sum_{k=1}^{m} c_{k} w_{k}(x)\right)-\left(y_{0}(x)+\sum_{k=1}^{m} c_{k} y_{k}(x)\right)$.
So there must exist polynomial $h(x)$ such that $h(x) t(x)=p(x)$.

- Arithmetic circuits can be mapped to QAPs efficiently

Schwartz-Zippel Lemma

Lemma

Let \mathbb{F} be any field. For any nonzero polynomial $f \in \mathbb{F}[x]$ of degree d and any finite subset S of \mathbb{F},

$$
\operatorname{Pr}[f(s)=0] \leq \frac{d}{|S|}
$$

when s is chosen uniformly from S.

- Suppose \mathbb{F} is a finite field of order $\approx 2^{256}$
- If s is chosen uniformly from \mathbb{F}, then it is unlikely to be a root of low-degree polynomials
- Equality of polynomials can be checked by evaluating them at the same random point

Outline of zkSNARKs

- Prover wants to show he knows a valid input-output assignment for function F
- A QAP for F is derived
- Prover has to show he knows $\left(c_{1}, \ldots, c_{m}\right)$ such that $t(x)$ divides $v(x) w(x)-y(x)$
- For a random $s \in \mathbb{F}$, verifier reveals $g^{s^{i}}, g^{v_{k}(s)}, g^{w_{k}(s)}, g^{y_{k}(s)}, g^{t(s)}$
- Prover calculates $h(x)$ such that $h(x) t(x)=v(x) w(x)-y(x)$
- Prover calculates $g^{v(s)}, g^{w(s)}, g^{y(s)}, g^{h(s)}$
- Verifier checks that

$$
\frac{e\left(g^{v(s)}, g^{w(s)}\right)}{e\left(g^{y(s)}, g\right)}=e\left(g^{h(s)}, g^{t(s)}\right)
$$

- For zero knowledge, prover picks random $\delta_{v}, \delta_{w}, \delta_{y}$ in \mathbb{F} and reveals $g^{\delta_{v} t(s)+v(s)}, g^{\delta_{w} t(s)+w(s)}, g^{\delta_{y} t(s)+y(s)}$ and an appropriate modification of $g^{h(s)}$
- Proof size is independent of circuit size (a few 100 bytes)
- Verification is of the order of milliseconds

ZCash CRS Generation in Brief

- Involves n parties who need to generate $g^{s}, g^{s^{2}}, \ldots, g^{s^{d}}$
- The value of s should not be made public
- Each party generates a random exponent s_{i}
- First party publishes $g^{s_{1}}, g^{s_{1}^{2}}, \ldots, g^{s_{1}^{d}}$
- Second party publishes $g^{s_{1} s_{2}}, g^{s_{1}^{2} s_{2}^{2}}, \ldots, g^{s_{1}^{d} s_{2}^{d}}$
- Last party publishes $g^{s_{1} s_{2} \cdots s_{n}}, \ldots, g^{s_{1}^{d} s_{2}^{d} \cdots s_{n}^{d}}$
- Desired $s=s_{1} s_{2} \cdots s_{n}$
- Only one party is required to destroy its secret s_{i} to keep s secret

References

- Pairing-Based Cryptographic Protocols: A Survey https://eprint.iacr.org/2004/064.pdf
- DDH and CDH Problems https://www.ee.iitb.ac.in/~sarva/courses/ EE720/2018/notes/lecture-20.pdf
- Pinocchio: Nearly Practical Verifiable Computation, https://eprint.iacr.org/2013/279.pdf
- ZCash Parameter Generation Protocol https://github.com/zcash/mpc/blob/master/whitepaper.pdf
- Zerocash https://eprint.iacr.org/2014/349.pdf

