Zero Knowledge Succinct Noninteractive ARguments of Knowledge

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

October 26, 2018

zkSNARKs

- Arguments
 - ZK proofs where soundness guarantee is required only against PPT provers
- Noninteractive
 - Proof consists of a single message from prover to verifier
- Succinct
 - Proof size is O(1)
 - Requires a trusted setup to generate a common reference string
 - · CRS size is linear in size of assertion being proved

Bilinear Pairings

- Let G and G_T be two cyclic groups of prime order q
- In practice, G is an elliptic curve group and G_T is subgroup of F_{ρⁿ}
- Let $G = \langle g \rangle$, i.e. $G = \{g^{\alpha} \mid \alpha \in \mathbb{Z}_q\}$
- A symmetric **pairing** is an efficient map *e* : *G* × *G* → *G*_T satisfying
 - 1. Bilinearity: $\forall \alpha, \beta \in \mathbb{Z}_q$, we have $e(g^{\alpha}, g^{\beta}) = e(g, g)^{\alpha \beta}$
 - 2. Non-degeneracy: e(g, g) is not the identity in G_T
- · Finding discrete logs is assumed to be difficult in both groups
- · Pairings enable multiplication of secrets
- Decisional Diffie-Hellman Problem: Given *x*, *y*, *z* chosen uniformly from Z_q and g^x, g^y, PPT adversary has to distinguish between g^{xy} and g^z
- DDH problem is easy in G
- Computation DH problem (computing g^{xy} from g^x and g^y) can be difficult

Applications of Pairings

- Three-party Diffie Hellman key agreement
 - Three parties Alice, Bob, Carol have private-public key pairs $(a, g^a), (b, g^b), (c, g^c)$ where $G = \langle g \rangle$
 - Alice sends g^a to the other two
 - Bob sends g^b to the other two
 - Carol sends g^c to the other two
 - Each party can compute common key
 K = e(g,g)^{abc} = e(g^b,g^c)^a = e(g^a,g^c)^b = e(g^a,g^b)^c
- BLS Signature Scheme
 - Suppose $H : \{0, 1\}^* \mapsto G$ is a hash function
 - Let (x, g^x) be a private-public key pair
 - BLS signature on message *m* is $\sigma = (H(m))^{x}$
 - Verifier checks that $e(g, \sigma) = e(g^x, H(m))$

Checking Polynomial Evaluation

- Prover knows a polynomial $p(x) \in \mathbb{F}_q[x]$ of degree d
- Verifier wants to check that prover computes $g^{p(s)}$ for some randomly chosen $s \in \mathbb{F}_q$
- Verifier does not care which p(x) is used but cares about the evaluation point s
- Verifier sends $g^{s^i}, i = 0, 1, 2, \dots, d$ to prover
- If $p(x) = \sum_{i=0}^{d} p_i x^i$, prover can compute $g^{p(s)}$ as

$$g^{p(s)}=\Pi_{i=0}^{d}\left(g^{s^{i}}
ight)^{p_{i}}$$

- But prover could have computed $g^{p(t)}$ for some $t \neq s$
- Verifier also sends $g^{\alpha s^i}, i = 0, 1, 2, ..., d$ for some randomly chosen $\alpha \in \mathbb{F}_q^*$
- Prover can now compute g^{αp(s)}
- Anyone can check that $e(g^{lpha},g^{p(s)})=e(g^{lpha p(s)},g)$
- But why can't the prover cheat by returning $g^{p(t)}$ and $g^{\alpha p(t)}$?

Knowledge of Exponent Assumptions

Knowledge of Exponent Assumption (KEA)

- Let *G* be a cyclic group of prime order *p* with generator *g* and let $\alpha \in \mathbb{Z}_p$
- Given g, g^{α} , suppose a PPT adversary can output c, \hat{c} such that $\hat{c} = c^{\alpha}$
- The only way he can do so is by choosing some $\beta\in\mathbb{Z}_p$ and setting $c=g^\beta$ and $\hat{c}=(g^\alpha)^\beta$

• *q*-Power Knowledge of Exponent (*q*-PKE) Assumption

- Let G be a cyclic group of prime order p with a pairing $e: G \times G \mapsto G_T$
- Let ${\it G}=\langle {\it g}
 angle$ and $lpha, {\it s}$ be randomly chosen from \mathbb{Z}_p^*
- Given $g, g^s, g^{s^2}, \dots, g^{s^q}, g^{\alpha}, g^{\alpha s}, g^{\alpha s^2}, \dots, g^{\alpha s^q}$, suppose a PPT adversary can output c, \hat{c} such that $\hat{c} = c^{\alpha}$
- The only way he can do so is by choosing some $a_0, a_1, \ldots, a_q \in \mathbb{Z}_p$ and setting $c = \prod_{i=0}^q \left(g^{s^i}\right)^{a_i}$ and $\hat{c} = \prod_{i=0}^q \left(g^{\alpha s^i}\right)^{a_i}$
- Under the *q*-PKE assumption, the polynomial evaluation verifier is convinced of the polynomial evaluation point
- Prover can hide $g^{p(s)}$ by sending $g^{\beta+p(s)}, g^{lpha(eta+p(s))}$

Quadratic Arithmetic Programs

- For a field $\mathbb F,$ an $\mathbb F\text{-arithmetic circuit}$ has inputs and outputs from $\mathbb F$
- Gates can perform addition and multiplication

Definition

A QAP *Q* over a field \mathbb{F} contains three sets of m + 1 polynomials $\mathcal{V} = \{v_k(x)\}$, $\mathcal{W} = \{w_k(x)\}, \mathcal{Y} = \{y_k(x)\}$, for $k \in \{0, 1, ..., m\}$, and a target polynomial t(x).

Suppose $F : \mathbb{F}^n \mapsto \mathbb{F}^{n'}$ where N = n + n'. We say that *Q* computes *F* if:

 $(c_1, c_2, \ldots, c_N) \in \mathbb{F}^N$ is a valid assignment of *F*'s inputs and outputs, if and only if there exist coefficients (c_{N+1}, \ldots, c_m) such that t(x) divides p(x) where

$$p(x) = \left(v_0(x) + \sum_{k=1}^m c_k v_k(x)\right) \cdot \left(w_0(x) + \sum_{k=1}^m c_k w_k(x)\right) - \left(y_0(x) + \sum_{k=1}^m c_k y_k(x)\right).$$

So there must exist polynomial h(x) such that h(x)t(x) = p(x).

· Arithmetic circuits can be mapped to QAPs efficiently

Schwartz-Zippel Lemma

Lemma

Let \mathbb{F} be any field. For any nonzero polynomial $f \in \mathbb{F}[x]$ of degree d and any finite subset S of \mathbb{F} ,

$$\Pr\left[f(s)=0
ight]\leqrac{d}{|S|}$$

when s is chosen uniformly from S.

- Suppose $\mathbb F$ is a finite field of order $\approx 2^{256}$
- If *s* is chosen uniformly from 𝔽, then it is unlikely to be a root of low-degree polynomials
- Equality of polynomials can be checked by evaluating them at the same random point

Outline of zkSNARKs

- Prover wants to show he knows a valid input-output assignment for function F
- A QAP for F is derived
- Prover has to show he knows (c_1, \ldots, c_m) such that t(x) divides v(x)w(x) y(x)
- For a random $s \in \mathbb{F}$, verifier reveals $g^{s^i}, g^{v_k(s)}, g^{w_k(s)}, g^{y_k(s)}, g^{t(s)}$
- Prover calculates h(x) such that h(x)t(x) = v(x)w(x) y(x)
- Prover calculates g^{v(s)}, g^{w(s)}, g^{y(s)}, g^{h(s)}
- Verifier checks that

$$rac{e\left(g^{
u(s)},g^{w(s)}
ight)}{e\left(g^{
u(s)},g
ight)}=e\left(g^{h(s)},g^{t(s)}
ight)$$

- For zero knowledge, prover picks random δ_V , δ_W , δ_V in \mathbb{F} and reveals $g^{\delta_V t(s)+v(s)}$, $g^{\delta_W t(s)+w(s)}$, $g^{\delta_V t(s)+y(s)}$ and an appropriate modification of $g^{h(s)}$
- Proof size is independent of circuit size (a few 100 bytes)
- Verification is of the order of milliseconds

ZCash CRS Generation in Brief

- Involves n parties who need to generate g^s, g^{s²},..., g^{s^d}
- The value of s should not be made public
- Each party generates a random exponent s_i
- First party publishes $g^{s_1}, g^{s_1^2}, \ldots, g^{s_1^d}$
- Second party publishes $g^{s_1s_2}, g^{s_1^2s_2^2}, \dots, g^{s_1^ds_2^d}$
- Last party publishes $g^{s_1s_2\cdots s_n},\ldots,g^{s_1^ds_2^d\cdots s_n^d}$
- Desired $s = s_1 s_2 \cdots s_n$
- Only one party is required to destroy its secret s_i to keep s secret

References

- Pairing-Based Cryptographic Protocols: A Survey https://eprint.iacr.org/2004/064.pdf
- DDH and CDH Problems https://www.ee.iitb.ac.in/~sarva/courses/ EE720/2018/notes/lecture-20.pdf
- Pinocchio: Nearly Practical Verifiable Computation, https://eprint.iacr.org/2013/279.pdf
- ZCash Parameter Generation Protocol https://github.com/zcash/mpc/blob/master/whitepaper.pdf
- Zerocash https://eprint.iacr.org/2014/349.pdf