
Zero Knowledge Succinct Noninteractive
ARguments of Knowledge

Saravanan Vijayakumaran
sarva@ee.iitb.ac.in

Department of Electrical Engineering
Indian Institute of Technology Bombay

October 26, 2018

1 / 11

mailto:sarva@ee.iitb.ac.in

zkSNARKs
• Arguments

• ZK proofs where soundness guarantee is required only against
PPT provers

• Noninteractive
• Proof consists of a single message from prover to verifier

• Succinct
• Proof size is O(1)
• Requires a trusted setup to generate a common reference string
• CRS size is linear in size of assertion being proved

2 / 11

Bilinear Pairings

• Let G and GT be two cyclic groups of prime order q
• In practice, G is an elliptic curve group and GT is subgroup of Fpn

• Let G = 〈g〉, i.e. G = {gα | α ∈ Zq}
• A symmetric pairing is an efficient map e : G ×G 7→ GT

satisfying
1. Bilinearity: ∀α, β ∈ Zq , we have e(gα, gβ) = e(g, g)αβ

2. Non-degeneracy: e(g, g) is not the identity in GT

• Finding discrete logs is assumed to be difficult in both groups
• Pairings enable multiplication of secrets
• Decisional Diffie-Hellman Problem: Given x , y , z chosen

uniformly from Zq and gx , gy , PPT adversary has to distinguish
between gxy and gz

• DDH problem is easy in G
• Computation DH problem (computing gxy from gx and gy) can be

difficult

3 / 11

Applications of Pairings
• Three-party Diffie Hellman key agreement

• Three parties Alice, Bob, Carol have private-public key pairs
(a, ga), (b, gb), (c, gc) where G = 〈g〉

• Alice sends ga to the other two
• Bob sends gb to the other two
• Carol sends gc to the other two
• Each party can compute common key

K = e(g, g)abc = e(gb, gc)a = e(ga, gc)b = e(ga, gb)c

• BLS Signature Scheme
• Suppose H : {0, 1}∗ 7→ G is a hash function
• Let (x , gx) be a private-public key pair
• BLS signature on message m is σ = (H(m))x

• Verifier checks that e(g, σ) = e(gx ,H(m))

4 / 11

Checking Polynomial Evaluation

• Prover knows a polynomial p(x) ∈ Fq[x] of degree d
• Verifier wants to check that prover computes gp(s) for some

randomly chosen s ∈ Fq

• Verifier does not care which p(x) is used but cares about the
evaluation point s

• Verifier sends gsi
, i = 0,1,2, . . . ,d to prover

• If p(x) =
∑d

i=0 pix i , prover can compute gp(s) as

gp(s) = Πd
i=0

(
gsi
)pi

• But prover could have computed gp(t) for some t 6= s

• Verifier also sends gαsi
, i = 0,1,2, . . . ,d for some randomly

chosen α ∈ F∗
q

• Prover can now compute gαp(s)

• Anyone can check that e(gα,gp(s)) = e(gαp(s),g)

• But why can’t the prover cheat by returning gp(t) and gαp(t) ?
5 / 11

Knowledge of Exponent Assumptions
• Knowledge of Exponent Assumption (KEA)

• Let G be a cyclic group of prime order p with generator g and let
α ∈ Zp

• Given g, gα, suppose a PPT adversary can output c, ĉ such that
ĉ = cα

• The only way he can do so is by choosing some β ∈ Zp and setting
c = gβ and ĉ = (gα)β

• q-Power Knowledge of Exponent (q-PKE) Assumption
• Let G be a cyclic group of prime order p with a pairing

e : G ×G 7→ GT

• Let G = 〈g〉 and α, s be randomly chosen from Z∗p
• Given g, gs, gs2

, . . . , gsq
, gα, gαs, gαs2

, . . . , gαsq
, suppose a PPT

adversary can output c, ĉ such that ĉ = cα

• The only way he can do so is by choosing some a0, a1, . . . , aq ∈ Zp

and setting c = Πq
i=0

(
gsi

)ai
and ĉ = Πq

i=0

(
gαsi

)ai

• Under the q-PKE assumption, the polynomial evaluation verifier
is convinced of the polynomial evaluation point

• Prover can hide gp(s) by sending gβ+p(s),gα(β+p(s))

6 / 11

Quadratic Arithmetic Programs

• For a field F, an F-arithmetic circuit has inputs and outputs from F
• Gates can perform addition and multiplication

Definition
A QAP Q over a field F contains three sets of m + 1 polynomials V = {vk (x)},
W = {wk (x)}, Y = {yk (x)}, for k ∈ {0, 1, . . . ,m}, and a target polynomial t(x).

Suppose F : Fn 7→ Fn′ where N = n + n′. We say that Q computes F if:

(c1, c2, . . . , cN) ∈ FN is a valid assignment of F ’s inputs and outputs, if and only if
there exist coefficients (cN+1, . . . , cm) such that t(x) divides p(x) where

p(x) =

(
v0(x) +

m∑
k=1

ck vk (x)

)
·
(

w0(x) +
m∑

k=1

ck wk (x)

)
−
(

y0(x) +
m∑

k=1

ck yk (x)

)
.

So there must exist polynomial h(x) such that h(x)t(x) = p(x).

• Arithmetic circuits can be mapped to QAPs efficiently

7 / 11

Schwartz-Zippel Lemma

Lemma
Let F be any field. For any nonzero polynomial f ∈ F[x] of degree d
and any finite subset S of F,

Pr [f (s) = 0] ≤ d
|S|

when s is chosen uniformly from S.

• Suppose F is a finite field of order ≈ 2256

• If s is chosen uniformly from F, then it is unlikely to be a root of
low-degree polynomials

• Equality of polynomials can be checked by evaluating them at
the same random point

8 / 11

Outline of zkSNARKs
• Prover wants to show he knows a valid input-output assignment for function F

• A QAP for F is derived

• Prover has to show he knows (c1, . . . , cm) such that t(x) divides v(x)w(x)− y(x)

• For a random s ∈ F, verifier reveals gsi
, gvk (s), gwk (s), gyk (s), gt(s)

• Prover calculates h(x) such that h(x)t(x) = v(x)w(x)− y(x)

• Prover calculates gv(s), gw(s), gy(s), gh(s)

• Verifier checks that
e
(
gv(s), gw(s))

e
(
gy(s), g

) = e
(

gh(s), gt(s)
)

• For zero knowledge, prover picks random δv , δw , δy in F and reveals
gδv t(s)+v(s), gδw t(s)+w(s), gδy t(s)+y(s) and an appropriate modification of gh(s)

• Proof size is independent of circuit size (a few 100 bytes)

• Verification is of the order of milliseconds

9 / 11

ZCash CRS Generation in Brief

• Involves n parties who need to generate gs,gs2
, . . . ,gsd

• The value of s should not be made public
• Each party generates a random exponent si

• First party publishes gs1 ,gs2
1 , . . . ,gsd

1

• Second party publishes gs1s2 ,gs2
1s2

2 , . . . ,gsd
1 sd

2

• Last party publishes gs1s2···sn , . . . ,gsd
1 sd

2 ···s
d
n

• Desired s = s1s2 · · · sn

• Only one party is required to destroy its secret si to keep s secret

10 / 11

References
• Pairing-Based Cryptographic Protocols : A Survey

https://eprint.iacr.org/2004/064.pdf

• DDH and CDH Problems https://www.ee.iitb.ac.in/~sarva/courses/
EE720/2018/notes/lecture-20.pdf

• Pinocchio: Nearly Practical Verifiable Computation,
https://eprint.iacr.org/2013/279.pdf

• ZCash Parameter Generation Protocol
https://github.com/zcash/mpc/blob/master/whitepaper.pdf

• Zerocash https://eprint.iacr.org/2014/349.pdf

11 / 11

https://eprint.iacr.org/2004/064.pdf
https://www.ee.iitb.ac.in/~sarva/courses/EE720/2018/notes/lecture-20.pdf
https://www.ee.iitb.ac.in/~sarva/courses/EE720/2018/notes/lecture-20.pdf
https://eprint.iacr.org/2013/279.pdf
https://github.com/zcash/mpc/blob/master/whitepaper.pdf
https://eprint.iacr.org/2014/349.pdf

