Bitcoin

Saravanan Vijayakumaran

Department of Electrical Engineering Indian Institute of Technology Bombay

January 8, 2024

What is Bitcoin?

- Cryptocurrency
- Open source software
- Decentralized network

Cryptocurrency Transaction Workflow

Decentralization Challenges

- Counterfeiting
- Currency creation rules
- Double spending
- Alice pays Bob n digicoins for a cake
- Alice uses the same n digicoins to pay Charlie for a book

Solution without a central coordinator?

Double Spending

- Familiar to academics
- Submitting same paper to two conferences
- Possible solution

Reviewers google paper contents to find duplicates

- Solution fails if
- Conferences accepting papers at same time
- Conference proceedings not published/indexed
- Better solution

A single public database to store all submissions to all conferences

The Blockchain

Blockchain: A public database to store all transactions which is replicated by many network nodes

How are the blocks linked?

Bitcoin Block and Header Formats

Block Header	Version Number
	Hash of Previous
Number of	Block Header
Transactions n	Hash of
Coinbase	Transactions
Transaction	Timestamp
Regular	Threshold
Transaction 1	Nonce
Regular Transaction 2	
引	Block Header Fields
Regular Transaction $n-1$	

- Hash = Output of cryptographic hash function

Block Header

nVersion
hashPrevBlock
hashMerkleRoot
nTime
nBits
nNonce

4 bytes
32 bytes
32 bytes
4 bytes
4 bytes
4 bytes

Previous Block Header

nVersion	
hashPrevBlock	
hashMerkleRoot	
nTime	
nBits	
nNonce	nVersion Double SHA-256
	hashPrevBlock hashMerkleRoot nTime nBits nNonce

Cryptographic Hash Functions

- Easy to compute but difficult to invert
- Collision-resistant
- Pseudorandom outputs
- SHA-256 = NIST approved CHF with 256-bit outputs

Input	SHA-256 Output
dec0	$0525 b d 43 e 7 b a 2917 e b b 5 f f 4893961 f a 6 e 6 a 3 b 5 c c a d b f f d 9 b c 520882168945 a 71$
dec1	$0740174 \mathrm{f} 35 f f 7 c b 50 b 8417 \mathrm{bdc50be} 191 \mathrm{f} 8 \mathrm{c} 5 \mathrm{e}$ daaf4c4bdb8498b1fe3aa41d0d
dec2	dabc08efd0d2ae280fc0177c978ab7c82542cc67d3acafb62cbd913b5b73cf72
dec3	a2b2c10ec26b94298e07e0273c319686721d6c7f285756fb4400b2bb9014ff4c
dec4	$5076 f 2 f 9 \mathrm{de8dbc00ebc6c72b3d207cd7b985b91f634026fd746fe07dc19993c3}$
dec5	$884466 e 61 b d 01 d 5282386 b 758313 b 44 a 424 b 6 d 9 d 890255770393 f 267664 c 64 f 9$
dec6	f37095c5192a84934ba69db9de48ad52051321fe64efc5bd95074eaaa66d08a4
dec7	aed0913ad1fedc68e621b23c895f5c2aa24db2cce1cb82ef123a92351ef081c3
dec8	8bac240a6fccbf8ead9a913d9e65f8394728e2cfeb36f745d1f0142f6e7fd0b6
dec9	99e9d59894056331a3ebe12870d9eb7b245a11707334a97dfad58de16eac977e

- At a billion outputs per second, 78 billion years required to calculate 2^{100} outputs

Hashcash

- A database you own where anyone in the world can add entries? Your email inbox
- Hashcash was proposed in 1997 to prevent spam
- Protocol
- Suppose an email client wants to send email to an email server
- Client and server agree upon a cryptographic hash function H
- Email server sends the client a challenge string c
- Client needs to find a string r such that $H(c \| r)$ begins with k zeros

- The r is considered proof-of-work (PoW); difficult to generate but easy to verify
- Demo

Difficulty Increases with k

- Let hash function output length n be 4 bits

- Since H has pseudorandom outputs, probability of success in a single trial is

$$
\frac{2^{n-k}}{2^{n}}=\frac{1}{2^{k}}
$$

Bitcoin Mining

- Mining $=$ Process of adding new blocks to the blockchain
- Nodes which want to perform transactions broadcast them
- Miners collect some of these transactions into a candidate block

- Threshold encodes a 256 -bit value like $0 x \underbrace{00 \cdots 00}_{16 \text { times }} \underbrace{\text { FFFFF } \ldots \text { FFFFF }}_{48 \text { times }}$
- Miner who can find Nonce such that

can add a new block

Mining is Hard

Target value T	Fraction of SHA256d outputs $\leq T$
$0 \times \underbrace{\text { FFFF FFFF } \ldots \text { FFFF }}_{63 \text { times }}$	$\frac{1}{2}$
$0 \times 0 \underbrace{F F F F}_{63 \text { times }}$ FFFF \cdots FFFF	$\frac{1}{16}$
$0 \times \underbrace{00 \cdots 00}_{16 \text { times }} \underbrace{\text { FFFFF } \ldots \text { FFFFF }}_{48 \text { times }}$	$\frac{1}{2^{64}}$

$$
\operatorname{Pr}[\text { SHA } 256 \text { d output } \leq T] \approx \frac{T+1}{2^{256}}
$$

Why should anyone mine blocks?

- Successful miner gets rewarded in bitcoins
- Every block contains a coinbase transaction which creates 6.25 bitcoins
- Each miner specifies his own address as the destination of the new coins
- Every miner is competing to solve their own PoW puzzle
- Miners also collect the transaction fees in the block

Mining Farms

- Mining farms have thousands of mining rigs
- Each mining rig has dozens of mining chips
- Each chip has dozens of SHA256 mining cores
- Farms are located in places with cheap power and cooling

Block Addition Workflow

- Nodes broadcast transactions
- Miners accept valid transactions and reject invalid ones (solves double spending)
- Miners try extending the latest block

- Miners compete to solve the search puzzle and broadcast solutions
- Unsuccessful miners abandon their current candidate blocks and start work on new ones

What if two miners solve the puzzle at the same time?

- Both miners will broadcast their solution on the network
- Nodes will accept the first solution they hear and reject others

- Nodes always switch to the chain which was more difficult to produce
- Eventually the network will converge and achieve consensus
- This is called proof-of-work (PoW) consensus

How often are new blocks created?

- Once every 10 minutes

nVersion
hashPrevBlock
hashMerkleRoot
nTime
nBits
nNonce

- Every 2016 blocks, the target T is recalculated
- Let $t_{\text {sum }}=$ Number of seconds taken to mine last 2016 blocks

$$
T_{\text {new }}=\frac{t_{\text {sum }}}{2016 \times 10 \times 60} \times T
$$

- Recall that probability of success in single trial is $\frac{T+1}{2^{256}}$
- If $t_{\text {sum }}=2016 \times 8 \times 60$, then $T_{\text {new }}=\frac{4}{5} T$
- If $t_{\text {sum }}=2016 \times 12 \times 60$, then $T_{\text {new }}=\frac{6}{5} T$
- Additionally, $T_{\text {new }}$ is clipped to be in $\left[\frac{T}{4}, 4 T\right]$

Bitcoin Blockchain Explorers

- Web interfaces to view current blockchain state
- https://www.blockstream.info
- https://www.blockchain.com/explorer
- Demo checklist
- List of transactions (coinbase, regular)
- Address generation in https://www.bitaddress.org
- Brainwallet generation at https://brainwalletx.github.io

Bitcoin Supply

- The block subsidy was initially 50 BTC per block
- Halves every 210,000 blocks ≈ 4 years
- Became 25 BTC in Nov 2012, 12.5 BTC in July 2016, 6.25 in May 2020, 3.125 in Apr 2024 (expected)
- Total Bitcoin supply is approx 21 million

Data source: https://www.blockchain.com/explorer/charts/total-bitcoins

- The last bitcoin will be mined in 2140

Merkle Hash of Transactions

nVersion
hashPrevBlock
hashMerkleRoot
nTime
nBits
nNonce

- Merkle hash of the transactions allows light clients

Padding the Merkle tree

- If the number of transactions is not a power of two, they are padded

Tamper Resistance

- Suppose Alice wants to modify block B_{N}

- Alice works on A_{N} branch; other miners work on B_{N} branch

- She needs to mine blocks faster than the rest of the miners
- Possible if she controls 50% or more of network hashrate
- Current Bitcoin network hashrate $\approx 500 \mathrm{EH} / \mathrm{s}=500 \times 10^{18} \mathrm{H} / \mathrm{s}$
- One mining unit costing $\$ 4000$ gives 200 TH/s
- Controlling 50% of hashrate $=$ Controlling 5 billion USD worth of hardware

Bitcoin Hashrate

Data source: https://www.blockchain.com/explorer/charts/hash-rate

Key Takeaways

- Bitcoin's blockchain prevents double spending and tampering
- Secure only if nobody controls 50% or more of network hashrate
- Mining difficulty adjusted to regulate coin supply
- Miners incentivized by block reward
- Block subsidy halves every four years to cap total coin supply

References

- Chapter 4 of An Introduction to Bitcoin, S. Vijayakumaran, www.ee.iitb.ac.in/~sarva/bitcoin.html
- Chapter 7 of Grokking Bitcoin, Kalle Rosenbaum
- Bitcoin Charts
- https://www.blockchain.com/explorer/charts
- https://data.bitcoinity.org/bitcoin/block_time
- Bitmain Mining Rigs https://shop.bitmain.com

