Bitcoin

Saravanan Vijayakumaran

Department of Electrical Engineering Indian Institute of Technology Bombay

January 8, 2024

What is Bitcoin?

- Cryptocurrency
- Open source software
- Decentralized network

Cryptocurrency Transaction Workflow

Cryptocurrency Network

Decentralization Challenges

- Counterfeiting
- Currency creation rules
- Double spending
 - Alice pays Bob n digicoins for a cake
 - Alice uses the **same** *n* digicoins to pay Charlie for a book

Solution without a central coordinator?

Double Spending

- Familiar to academics
- Submitting same paper to two conferences
- Possible solution
 Reviewers google paper contents to find duplicates
- Solution fails if
 - Conferences accepting papers at same time
 - Conference proceedings not published/indexed

Better solution

A single public database to store all submissions to all conferences

The Blockchain

Blockchain: A public database to store all transactions which is replicated by many network nodes

How are the blocks linked?

Bitcoin Block and Header Formats

Hash = Output of cryptographic hash function

Block Header

nVersion
hashPrevBlock
hashMerkleRoot
nTime
nBits
nNonce

4 bytes 32 bytes 32 bytes 4 bytes 4 bytes 4 bytes

Cryptographic Hash Functions

- Easy to compute but difficult to invert
- Collision-resistant
- Pseudorandom outputs
- SHA-256 = NIST approved CHF with 256-bit outputs

Input	SHA-256 Output
dec0	0525bd43e7ba2917ebb5ff4893961fa6e6a3b5ccadbffd9bc520882168945a71
dec1	0740174f35ff7cb50b8417bdc50be191f8c5e5daaf4c4bdb8498b1fe3aa41d0d
dec2	dabc08efd0d2ae280fc0177c978ab7c82542cc67d3acafb62cbd913b5b73cf72
dec3	a2b2c10ec26b94298e07e0273c319686721d6c7f285756fb4400b2bb9014ff4c
dec4	5076f2f9de8dbc00ebc6c72b3d207cd7b985b91f634026fd746fe07dc19993c3
dec5	884466e61bd01d5282386b758313b44a424b6d9d890255770393f267664c64f9
dec6	f37095c5192a84934ba69db9de48ad52051321fe64efc5bd95074eaaa66d08a4
dec7	aed0913ad1fedc68e621b23c895f5c2aa24db2cce1cb82ef123a92351ef081c3
dec8	8bac240a6fccbf8ead9a913d9e65f8394728e2cfeb36f745d1f0142f6e7fd0b6
dec9	99e9d59894056331a3ebe12870d9eb7b245a11707334a97dfad58de16eac977e

 At a billion outputs per second, 78 billion years required to calculate 2¹⁰⁰ outputs

Hashcash

- A database you own where anyone in the world can add entries? Your email inbox
- Hashcash was proposed in 1997 to prevent spam
- Protocol
 - Suppose an email client wants to send email to an email server
 - Client and server agree upon a cryptographic hash function H
 - Email server sends the client a challenge string c
 - Client needs to find a string r such that H(c||r) begins with k zeros

- The *r* is considered **proof-of-work (PoW)**; difficult to generate but easy to verify
- Demo

Difficulty Increases with k

• Let hash function output length n be 4 bits

• Since *H* has pseudorandom outputs, probability of success in a single trial is

$$\frac{2^{n-k}}{2^n} = \frac{1}{2^k}$$

Bitcoin Mining

- Mining = Process of adding new blocks to the blockchain
- Nodes which want to perform transactions broadcast them
- Miners collect some of these transactions into a candidate block

- Threshold encodes a 256-bit value like 0x 00 ··· 00 FFFFF ··· FFFFF
- Miner who can find Nonce such that

SHA256(SHA256(Version Number $\| \cdots \|$ Nonce)) \leq Threshold.

Candidate Block Header

16 times

48 times

can add a new block

Pr [SHA256d output
$$\leq T$$
] $pprox rac{T+1}{2^{256}}$

Why should anyone mine blocks?

- Successful miner gets rewarded in bitcoins
- Every block contains a **coinbase transaction** which creates 6.25 bitcoins
- Each miner specifies his own address as the destination of the new coins
- Every miner is competing to solve their own PoW puzzle
- Miners also collect the transaction fees in the block

Mining Farms

- Mining farms have thousands of mining rigs
- Each mining rig has dozens of mining chips
- · Each chip has dozens of SHA256 mining cores
- Farms are located in places with cheap power and cooling

Block Addition Workflow

- Nodes broadcast transactions
- Miners accept valid transactions and reject invalid ones (solves double spending)
- Miners try extending the latest block

- Miners compete to solve the search puzzle and broadcast solutions
- Unsuccessful miners abandon their current candidate blocks and start work on new ones

What if two miners solve the puzzle at the same time?

- Both miners will broadcast their solution on the network
- Nodes will accept the first solution they hear and reject others

- Nodes always switch to the chain which was more difficult to produce
- Eventually the network will converge and achieve consensus
- This is called proof-of-work (PoW) consensus

How often are new blocks created?

Once every 10 minutes

- Every 2016 blocks, the target T is recalculated
- Let t_{sum} = Number of seconds taken to mine last 2016 blocks

$$T_{\text{new}} = rac{t_{\text{sum}}}{2016 \times 10 \times 60} \times T$$

- Recall that probability of success in single trial is <u>7+1</u>
 <u>2256</u>
- If $t_{SUM} = 2016 \times 8 \times 60$, then $T_{NEW} = \frac{4}{5}T$
- If $t_{\text{SUM}} = 2016 \times 12 \times 60$, then $T_{\text{NeW}} = \frac{6}{5}T$
- Additionally, T_{new} is clipped to be in $\left[\frac{T}{4}, 4T\right]$

Bitcoin Blockchain Explorers

· Web interfaces to view current blockchain state

- https://www.blockstream.info
- https://www.blockchain.com/explorer
- Demo checklist
 - List of transactions (coinbase, regular)
 - Address generation in https://www.bitaddress.org
 - Brainwallet generation at https://brainwalletx.github.io

Bitcoin Supply

- The block subsidy was initially 50 BTC per block
- Halves every 210,000 blocks \approx 4 years
- Became 25 BTC in Nov 2012, 12.5 BTC in July 2016, 6.25 in May 2020, 3.125 in Apr 2024 (expected)
- Total Bitcoin supply is approx 21 million

Data source: https://www.blockchain.com/explorer/charts/total-bitcoins

• The last bitcoin will be mined in 2140

Merkle Hash of Transactions

Merkle hash of the transactions allows light clients

Padding the Merkle tree

 If the number of transactions is not a power of two, they are padded

Tamper Resistance

Suppose Alice wants to modify block B_N

• Alice works on A_N branch; other miners work on B_N branch

- She needs to mine blocks faster than the rest of the miners
- Possible if she controls 50% or more of network hashrate
- Current Bitcoin network hashrate \approx 500 EH/s = 500 \times 10¹⁸ H/s
- One mining unit costing \$4000 gives 200 TH/s
- Controlling 50% of hashrate = Controlling 5 billion USD worth of hardware

Bitcoin Hashrate

Data source: https://www.blockchain.com/explorer/charts/hash-rate

Key Takeaways

- Bitcoin's blockchain prevents double spending and tampering
- Secure only if nobody controls 50% or more of network hashrate
- Mining difficulty adjusted to regulate coin supply
- Miners incentivized by block reward
- Block subsidy halves every four years to cap total coin supply

References

- Chapter 4 of An Introduction to Bitcoin, S. Vijayakumaran, www.ee.iitb.ac.in/~sarva/bitcoin.html
- Chapter 7 of Grokking Bitcoin, Kalle Rosenbaum
- Bitcoin Charts
 - https://www.blockchain.com/explorer/charts
 - https://data.bitcoinity.org/bitcoin/block_time
- Bitmain Mining Rigs https://shop.bitmain.com