EE 605: Error Correcting Codes Instructor: Saravanan Vijayakumaran Indian Institute of Technology Bombay Autumn 2010

Solutions to Assignment 2

Prepared by Sravan Kumar Jatavath

1. Given, H is a subset of G such that it is non-empty, finite and closed under group operation \star .

Since H is closed under group operation \star, \star is a valid binary operation over set H.

Associative property follows from the fact that G is a group.

Now, subset H is non-empty.

Hence \exists at least one element in H, call it 'a'.

Now, consider a set $B, B = \{a, a \star a, a \star a \star a, \dots\}$

Because H is closed under \star , $a \star a \in H$, $a \star a \star a \in H$ and so on.

We see that $B \subseteq H \Rightarrow |B| \le |H|$

Since, H is finite, the cardinality of B is finite.

That means, $a, a \star a, a \star a \star a, \ldots$ cannot all be distinct. So there exist positive integers i and j such that

$$\underbrace{\underbrace{a \star a \star \ldots \star a}_{i \text{ times}} = \underbrace{a \star a \star \ldots \star a}_{j \text{ times}}$$

$$\Rightarrow \underbrace{a \star a \star \ldots \star a}_{(i-j) \text{ times}} = e$$

where *e* is the identity of the group *G*. The second equality is obtained by multiplying both sides by $a^{-1} \star a^{-1} \star \cdots \star a^{-1}$

$$j$$
 times

However, $\underbrace{a \star a \star \ldots \star a}_{k \text{ times}} \in H$ where k = i - j > 0 because H is closed under \star .

This implies that $e \in H$. Since e is the identity of the group G, $a \star e = e \star a = a$ for all $a \in H$.

Now, only thing left to prove is the existence of inverse. Consider any element a in subset H. We need to prove that there exists $b \in H$ such that $a \star b = b \star a = e$

If a = e, then a is the inverse of itself. Otherwise, by the argument presented earlier, there exists a positive integer k such that $\underbrace{a \star a \star \dots \star a}_{k \text{ times}} = e$. Let $b = \underbrace{a \star a \star \dots \star a}_{k-1 \text{ times}}$. Then $a \star b = b \star a = e$. Since $b \in H$, the inverse of every element $a \in H$ exists. Hence, H is a subgroup of G. 2. Consider the set of integers $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$ under the operation real addition. It is easy to show that \mathbb{Z} is a group, since addition is associative, closed over integers, 0 is the identity and for a, -a is the inverse.

Let $\mathbb{Z}^+ = \{1, 2, 3, ...\}$. \mathbb{Z}^+ is non-empty, infinite and closed under addition. However, \mathbb{Z}^+ is not a subgroup of \mathbb{Z} since there is no identity element.

3. Let H and K be subgroups of a group G.

One direction: Given H is a subgroup of K or K is a subgroup of H, we want to prove that $H \cup K$ is a subgroup of G.

 $H \cup K = H$ if K subgroup of H or $H \cup K = K$ if H subgroup of K. Since H and K are subgroups of G, $H \cup K$ is a subgroup of G.

Other direction: Given $H, K, H \cup K$ are subgroups of G, we want to prove that H is a subgroup of K or K is a subgroup of H.

If H is a subgroup of K, we have nothing to prove. Suppose H is not a subgroup of K. Since H is a subgroup of G, this is possible only if H is not a subset of K. So there exists an element $a \in H$ such that $a \notin K$. Now for any $b \in K$, $a \star b \in H \cup K$. Now $a \star b$ cannot be in K because if it does belong to K then $a \star b \star b^{-1} = a$ belongs to K, which is a contradiction. So $a \star b \in H$ for all $b \in K$. This implies that $a^{-1} \star a \star b = b$ belongs to H. Thus every element of K belongs to H and K is a subgroup of H.

4. Given H and K are subgroups of G. Consider $H \cap K$. We will use a theorem proved in class that subset H is subgroup of G if $H \neq \phi$ and $x, y \in H \Rightarrow xy^{-1} \in H$.

 $H \cap K \neq \phi$ because the identity is in both subgroups.

Also, for any $x, y \in H \cap K, x, y \in H$ and $x, y \in K$

 $\Rightarrow xy^{-1} \in H$ and $xy^{-1} \in K$

$$\Rightarrow xy^{-1} \in H \cap K$$

Hence, $H \cap K$ is also a subgroup.

- 5. H is a subgroup of G,
 - $\Rightarrow O(H) \mid O(G)$ $\Rightarrow O(H) \mid n$
 - (n-1) does not divide n for n > 2.

$$\Rightarrow O(H) \neq n-1$$

Hence, G cannot have subgroup H such that |H| = n - 1.

6. $\mathbb{Z}_n = \{0, 1, 2, ..., n-1\}$ with operation addition modulo n.

Let P be the subgroup of \mathbb{Z}_n . $P \neq \phi$, since it is a group. If $P = \{0\}$, the P is cyclic. Suppose $P \neq \{0\}$. By the well-ordering property of the integers, there exists a smallest non-zero element in this subgroup P. Let it be s. We claim that P is cyclic with generator s, i.e. every element of P is a multiple of s modulo n. Suppose this is not true. Then there exists an integer $m \in P$ such that m is not divisible by s. Then we can write m = qs + r where 0 < r < s and q is a positive integer representing the

quotient. Since $s \in P$, $qs \mod n = \underbrace{s + \dots + s}_{q \text{ times}} \mod n \in P$. Since m and $qs \mod n$

belong to $P, r = m - qs \mod n \in P$ where -qs is the additive inverse of $qs \mod n$ in P. This is a contradiction since 0 < r < s and s was chosen to be the smallest non-zero element of P.

Thus, every subgroup of \mathbb{Z}_n is cyclic.

7. $\phi: G \to H$ is an isomorphism between G and H. $\Rightarrow \phi(x *_g y) = \phi(x) *_H \phi(y), \quad x, y \in G$

$$\Rightarrow \phi(x *_g O_g) = \phi(x) *_H \phi(O_g)$$

$$\Rightarrow \phi(x) = \phi(x) *_H \phi(O_g)$$

$$\Phi : G \to H \Rightarrow \text{Let } \phi(x) = h \in H$$

$$h = h *_H \phi(O_g)$$

Similarly, $h = \phi(O_g) *_H h$ (similar to above)

$$\Rightarrow O_H = \phi(O_g)$$

8. All finite cyclic groups are isomorphic to \mathbb{Z}_n .

Proof: Let G be a finite cyclic group. We need a one-to-one and onto function $h: G \to Z_n$ such that $h(x \oplus y) = h(x) * h(y), \forall x, y \in G$.

Let g be the generator element of G and $i \cdot g$ denote $\underbrace{g \oplus g \oplus \ldots \oplus g}_{i \text{ times}}$ for every integer i > 0. Since G is cyclic, every element in G can be written as $i \cdot g$ for some positive integer i. Since G is finite there exists a smallest positive integer n such that $n \cdot g = 0$. Define $h: G \to \mathbb{Z}_n$ as $h(i \cdot g) = i$. It can be shown that h is one-to-one and onto. For any $x, y \in G$, $x = i \cdot g$ and $y = j \cdot g$ for some positive integers i and j less than n. Also $x \oplus y = i \cdot g + j \cdot g = (i + j \mod n) \cdot g$. This proves that $h(x \oplus y) = h(x) * h(y)$ since both sides are equal to $(i + j) \mod n$.

- 9. All finite cyclic groups are isomorphic to \mathbb{Z}_n and \mathbb{Z}_n is abelian. So all finite cyclic groups have to be abelian. Suppose this is not true. Then there exists a finite cyclic group G with elements x and y such that $x \star y \neq y \star x$. Since G is isomorphic to \mathbb{Z}_n , there is a one-to-one and onto function $h: G \to \mathbb{Z}_n$ such that $h(x \star y) = h(x) \star h(y)$. Since \mathbb{Z}_n is abelian, $h(x) \star h(y) = h(y) \star h(x)$. This implies $h(x \star y) = h(y \star x)$. Since h is one-to-one $x \star y = y \star x$. This contradicts our assumption that G is not abelian.
- 10. $x \in G$, $m, n \in \mathbb{Z}$. To prove that if $x^n = 1$ and $x^m = 1$, then $x^d = 1$ where $d = \gcd(m, n)$. Using Bezout's theorem, $d = \gcd(m, n) = \operatorname{am} + \operatorname{bn}$ for some integers $a, b \in \mathbb{Z}$. Then

$$x^{d} = x^{am+bn} = (x^{m})^{a} (x^{n})^{b} = 1$$

Let n be the order of x. This means $x^n = 1$ and $x^i \neq 1$ for i = 1, 2, ..., n - 1. Given that $x^m = 1$, $x^{\text{gcd}(m,n)} = 1$. Then $\text{gcd}(m,n) \geq n$ since n is the smallest positive integer such that $x^n = 1$. However, $d = \text{gcd}(m,n) \leq n$, since a divisor of a positive integer is less than or equal to it. Thus gcd(m,n) = n and n divides m.