EE 605: Error Correcting Codes
 Instructor: Saravanan Vijayakumaran
 Indian Institute of Technology Bombay
 Autumn 2010

Prepared by Sravan Kumar Jatavath

1. Given, H is a subset of G such that it is non-empty, finite and closed under group operation \star.
Since H is closed under group operation \star, \star is a valid binary operation over set H.
Associative property follows from the fact that G is a group.
Now, subset H is non-empty.
Hence \exists at least one element in H, call it ' a '.
Now, consider a set $B, B=\{a, a \star a, a \star a \star a, \ldots\}$
Because H is closed under $\star, a \star a \in H, a \star a \star a \in H$ and so on.
We see that $B \subseteq H \Rightarrow|B| \leq|H|$
Since, H is finite, the cardinality of B is finite.
That means, $a, a \star a, a \star a \star a, \ldots$ cannot all be distinct. So there exist positive integers i and j such that

$$
\begin{aligned}
& \underbrace{a \star a \star \ldots \star a}_{i \text { times }} \\
& \Rightarrow \underbrace{a \star a \star \ldots \star a}_{(i-j) \text { times }}=e_{j \text { times }}^{a \star a \star \ldots \star a}
\end{aligned}
$$

where e is the identity of the group G. The second equality is obtained by multiplying both sides by $\underbrace{a^{-1} \star a^{-1} \star \cdots \star a^{-1}}_{j \text { times }}$
However, $\underbrace{a \star a \star \ldots \star a}_{k \text { times }} \in H$ where $k=i-j>0$ because H is closed under \star.
This implies that $e \in H$. Since e is the identity of the group $G, a \star e=e \star a=a$ for all $a \in H$.

Now, only thing left to prove is the existence of inverse. Consider any element a in subset H. We need to prove that there exists $b \in H$ such that $a \star b=b \star a=e$
If $a=e$, then a is the inverse of itself. Otherwise, by the argument presented earlier, there exists a positive integer k such that $\underbrace{a \star a \star \ldots \star a}_{k \text { times }}=e$. Let $b=\underbrace{a \star a \star \ldots \star a}_{k-1 \text { times }}$.
Then $a \star b=b \star a=e$. Since $b \in H$, the inverse of every element $a \in H$ exists.
Hence, H is a subgroup of G.
2. Consider the set of integers $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$ under the operation real addition. It is easy to show that \mathbb{Z} is a group, since addition is associative, closed over integers, 0 is the identity and for $a,-a$ is the inverse.

Let $\mathbb{Z}^{+}=\{1,2,3, \ldots\} . \mathbb{Z}^{+}$is non-empty, infinite and closed under addition. However, \mathbb{Z}^{+}is not a subgroup of \mathbb{Z} since there is no identity element.
3. Let H and K be subgroups of a group G.

One direction: Given H is a subgroup of K or K is a subgroup of H, we want to prove that $H \cup K$ is a subgroup of G.
$H \cup K=H$ if K subgroup of H or $H \cup K=K$ if H subgroup of K. Since H and K are subgroups of $G, H \cup K$ is a subgroup of G.

Other direction: Given $H, K, H \cup K$ are subgroups of G, we want to prove that H is a subgroup of K or K is a subgroup of H.

If H is a subgroup of K, we have nothing to prove. Suppose H is not a subgroup of K. Since H is a subgroup of G, this is possible only if H is not a subset of K. So there exists an element $a \in H$ such that $a \notin K$. Now for any $b \in K, a \star b \in H \cup K$. Now $a \star b$ cannot be in K because if it does belong to K then $a \star b \star b^{-1}=a$ belongs to K, which is a contradiction. So $a \star b \in H$ for all $b \in K$. This implies that $a^{-1} \star a \star b=b$ belongs to H. Thus every element of K belongs to H and K is a subgroup of H.
4. Given H and K are subgroups of G. Consider $H \cap K$. We will use a theorem proved in class that subset H is subgroup of G if $H \neq \phi$ and $x, y \in H \Rightarrow x y^{-1} \in H$.
$H \cap K \neq \phi$ because the identity is in both subgroups.
Also, for any $x, y \in H \cap K, x, y \in H$ and $x, y \in K$
$\Rightarrow x y^{-1} \in H$ and $x y^{-1} \in K$
$\Rightarrow x y^{-1} \in H \cap K$
Hence, $H \cap K$ is also a subgroup.
5. H is a subgroup of G,
$\Rightarrow O(H) \mid O(G)$
$\Rightarrow O(H) \mid n$
($n-1$) does not divide n for $n>2$.
$\Rightarrow O(H) \neq n-1$
Hence, G cannot have subgroup H such that $|H|=n-1$.
6. $\mathbb{Z}_{n}=\{0,1,2, \ldots, n-1\}$ with operation addition modulo n.

Let P be the subgroup of \mathbb{Z}_{n}. $P \neq \phi$, since it is a group. If $P=\{0\}$, the P is cyclic. Suppose $P \neq\{0\}$. By the well-ordering property of the integers, there exists a smallest non-zero element in this subgroup P. Let it be s. We claim that P is cyclic with generator s, i.e. every element of P is a multiple of s modulo n. Suppose this is not true. Then there exists an integer $m \in P$ such that m is not divisible by s. Then we can write $m=q s+r$ where $0<r<s$ and q is a positive integer representing the
quotient. Since $s \in P$, $q s \bmod n=\underbrace{s+\cdots+s}_{q \text { times }} \bmod n \in P$. Since m and $q s \bmod n$ belong to $P, r=m-q s \bmod n \in P$ where $-q s$ is the additive inverse of $q s \bmod n$ in P. This is a contradiction since $0<r<s$ and s was chosen to be the smallest non-zero element of P.
Thus, every subgroup of \mathbb{Z}_{n} is cyclic.
7. $\phi: G \rightarrow H$ is an isomorphism between G and H.
$\Rightarrow \phi\left(x *_{g} y\right)=\phi(x) *_{H} \phi(y), \quad x, y \in G$
$\Rightarrow \phi\left(x *_{g} O_{g}\right)=\phi(x) *_{H} \phi\left(O_{g}\right)$
$\Rightarrow \phi(x)=\phi(x) *_{H} \phi\left(O_{g}\right)$
$\Phi: G \rightarrow H \Rightarrow \operatorname{Let} \phi(x)=h \in H$
$h=h *_{H} \phi\left(O_{g}\right)$
Similarly, $h=\phi\left(O_{g}\right) *_{H} h$ (similar to above)
$\Rightarrow O_{H}=\phi\left(O_{g}\right)$
8. All finite cyclic groups are isomorphic to \mathbb{Z}_{n}.

Proof: Let G be a finite cyclic group. We need a one-to-one and onto function $h: G \rightarrow Z_{n}$ such that $h(x \oplus y)=h(x) * h(y), \forall x, y \in G$.
Let g be the generator element of G and $i \cdot g$ denote $\underbrace{g \oplus g \oplus \ldots \oplus g}_{\mathrm{i} \text { times }}$ for every integer $i>0$. Since G is cyclic, every element in G can be written as $i \cdot g$ for some positive integer i. Since G is finite there exists a smallest positive integer n such that $n \cdot g=0$.
Define $h: G \rightarrow \mathbb{Z}_{n}$ as $h(i \cdot g)=i$. It can be shown that h is one-to-one and onto.
For any $x, y \in G, x=i \cdot g$ and $y=j \cdot g$ for some positive integers i and j less than n. Also $x \oplus y=i \cdot g+j \cdot g=(i+j \bmod n) \cdot g$. This proves that $h(x \oplus y)=h(x) * h(y)$ since both sides are equal to $(i+j) \bmod n$.
9. All finite cyclic groups are isomorphic to \mathbb{Z}_{n} and \mathbb{Z}_{n} is abelian. So all finite cyclic groups have to be abelian. Suppose this is not true. Then there exists a finite cyclic group G with elements x and y such that $x \star y \neq y \star x$. Since G is isomorphic to \mathbb{Z}_{n}, there is a one-to-one and onto function $h: G \rightarrow \mathbb{Z}_{n}$ such that $h(x \star y)=h(x) \star h(y)$. Since \mathbb{Z}_{n} is abelian, $h(x) \star h(y)=h(y) \star h(x)$. This implies $h(x \star y)=h(y \star x)$. Since h is one-to-one $x \star y=y \star x$. This contradicts our assumption that G is not abelian.
10. $x \in G, m, n \in \mathbb{Z}$. To prove that if $x^{n}=1$ and $x^{m}=1$, then $x^{d}=1$ where $d=\operatorname{gcd}(m, n)$. Using Bezout's theorem, $d=\operatorname{gcd}(m, n)=\mathrm{am}+\mathrm{bn}$ for some integers $a, b \in \mathbb{Z}$. Then

$$
x^{d}=x^{a m+b n}=\left(x^{m}\right)^{a}\left(x^{n}\right)^{b}=1
$$

Let n be the order of x. This means $x^{n}=1$ and $x^{i} \neq 1$ for $i=1,2, \ldots, n-1$. Given that $x^{m}=1, x^{\operatorname{gcd}(m, n)}=1$. Then $\operatorname{gcd}(m, n) \geq n$ since n is the smallest positive integer such that $x^{n}=1$. However, $d=\operatorname{gcd}(m, n) \leq n$, since a divisor of a positive integer is less than or equal to it. Thus $\operatorname{gcd}(m, n)=n$ and n divides m.

