EE 605: Error Correcting Codes
Instructor: Saravanan Vijayakumaran
Indian Institute of Technology Bombay
Autumn 2010

Solutions to Assignment 3
Prepared by Sravan Kumar Jatavath

1. Suppose $F_{q}=\left\{0, \beta_{1}, \beta_{2}, \ldots, \beta_{q-1}\right\}$. We know that

$$
x^{q}-x=x \prod_{i=1}^{q-1}\left(x-\beta_{i}\right) \Rightarrow x^{q-1}-1=\prod_{i=1}^{q-1}\left(x-\beta_{i}\right)
$$

Let -1 be the additive inverse of the multiplicative identity 1 of F_{q}. Then using the distributive property we can prove that $-\beta_{i}=(-1) \beta_{i}$ for all i. Now equating the constant terms on both sides of the above equation we get

$$
-1=(-1)^{q-1} \prod_{i=1}^{q-1} \beta_{i} \Rightarrow \prod_{i=1}^{q-1} \beta_{i}=(-1)^{q-2}
$$

Equating the coefficients of x^{q-2} on both sides of the first equation we get

$$
0=-\left(\sum_{i=1}^{q-1} \beta_{i}\right) \Rightarrow \sum_{i=1}^{q-1} \beta_{i}=0
$$

2. Consider the irreducible polynomial $x^{3}+x+1 \in \mathbb{F}_{2}[x]$. The set of remainders $R_{\mathbb{F}_{2}, 3}$ with the operations of addition and multiplication modulo $x^{3}+x+1$ form a field of $2^{3}=8$ elements. The set $R_{\mathbb{F}_{2}, 3}$ consists of the elements $\left\{0,1, x, x+1, x^{2}, x^{2}+1, x^{2}+\right.$ $\left.x, x^{2}+x+1\right\}$.
3. Determine all the primitive elements of F_{7} and F_{17}.

The primitive element of a field is the non-zero element whose powers generate all the non-zero elements of the field. A field of 7 element is isomorphic to $\{0,1,2,3,4,5,6\}$. The candidates for the primitive element are the non-zero elements $F_{7}^{*}=\{1,2,3,4,5,6\}$. For any element $a \in F_{7}^{*}$, consider the multiplicative subgroup generated by it: $S(a)=\left\{1, a, a^{2}, \ldots, a^{n-1}\right\}$. The number of elements in $S(a)$ is equal to the order n of a. By Lagrange's theorem, n divides 6 . So the possible orders of a non-zero element in F_{7} are 1, 2, 3 and 6 . If an element is primitive, then it needs to have order $\left|F_{7}^{*}\right|=6$.
The element 1 has order 1 so it is not primitive. Since $6^{2}=1 \bmod 7,6$ has order 2. None of $\{2,3,4,5\}$ are equal to $1 \bmod 7$ when they are squared. Since $2^{3}=8=$ $1 \bmod 7$ and $4^{3}=64=1 \bmod 7,2$ and 4 have order 3 . Both 3 and 5 are not equal to $1 \bmod 7$ when they are cubed. So they have to have order 6 and are primitive elements.
Similarly, the possible orders of non-zero elements in F_{17} are 1, 2, 4, 8 and 16. Eliminating those non-zero elements which have orders 1, 2, 4 or 8 we get the primitive elements as $\{3,5,6,7,10,11,12,14\}$.
4. The prime polynomials of degree 1 in $F_{2}[x]$ are $\{x, x+1\}$. Of the degree 2 polynomials in $F_{2}[x],\left\{x^{2}, x^{2}+1, x^{2}+x, x^{2}+x+1\right\}$, only $x^{2}+x+1$ is prime because the other three either have an even number of terms (which results in $x+1$ being a factor) or have x as a factor. The non-prime polynomials of degree 3 must have a degree 1 factor which is either x or $x+1$. So the polynomials of degree 3 with a non-zero constant term and an odd number of terms are prime: $\left\{x^{3}+x+1, x^{3}+x^{2}+1\right\}$.
We claim that a non-prime polynomial of degree 5 has either $x, x+1$ or $x^{2}+x+1$ as a factor. If not, all its prime factors are degree 3 or higher. Two such factors cannot add up to degree 5 . So if we eliminate all the polynomials of degree 5 which have $x, x+1$ or $x^{2}+x+1$ as a factor, the remaining are the prime polynomials of degree 5 . If we choose only those degree 5 polynomials whose constant term is non-zero, we eliminate degree 5 polynomials which have x as a factor. If we choose only those degree 5 polynomials which have an odd number of terms, we eliminate degree 5 polynomials which have $x+1$ as a factor. The degree 5 polynomials which have an odd number of terms, a non-zero constant term and $x^{2}+x+1$ as a factor are $\left(x^{2}+x+1\right)\left(x^{3}+x+1\right)=x^{5}+x^{4}+1$ and $\left(x^{2}+x+1\right)\left(x^{3}+x^{2}+1\right)=x^{5}+x+1$. The remaining degree 5 polynomials with non-zero constant term and odd number of terms are prime.
5. One direction: Suppose $\operatorname{gcd}(q-1, k)=1$. Let $\beta \in F_{q}$. If $\beta=0$, then it is the k th power of 0 itself. Suppose $\beta \neq 0$, then $\beta^{q-1}=1$. By Bezout's identity, $1=a(q-1)+b k$ for some integers $a, b \in \mathbb{Z}$. Then we have

$$
\beta=\beta^{1}=\beta^{a(q-1)+b k}=\left[\beta^{q-1}\right]^{a}\left[\beta^{b}\right]^{k}=\left[\beta^{b}\right]^{k}
$$

Since $\beta^{b} \in F_{q}$, we have proved that every element in F_{q} is a k th power of some other element in F_{q}.
Other direction: Suppose every element in F_{q} is the k th power of some other element in F_{q}. Let α be the primitive element of F_{q}. Then $\alpha^{q-1}=1$ and $\alpha^{i} \neq 1$ for $i=1,2, \ldots, q-2$. By our assumption $\alpha=\beta^{k}$ for some element $\beta \in F_{q}$. Also $\beta^{q-1}=1$ since β is a non-zero element in a field of q elements.
Suppose $\operatorname{gcd}(q-1, k)=d \neq 1$. Then $\frac{q-1}{d}$ is a positive integer less than $q-1$. Note that $\frac{k}{d}$ is also a positive integer less than k. Now we get

$$
\alpha^{\frac{q-1}{d}}=\left(\beta^{k}\right)^{\frac{q-1}{d}}=\left(\beta^{q-1}\right)^{\frac{k}{d}}=1^{\frac{k}{d}}=1
$$

which is a contradiction since $\frac{q-1}{d}<q-1$ and α is a primitive element. So $\operatorname{gcd}(q-$ $1, k)=1$.

