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1. The generator matrix

G =

 1 1 1 0 0
0 0 1 1 0
1 1 1 1 1


can be brought to a systematic form by adding the first row to the second row and
the second row to the third row. Since the rows of the generator matrix are linearly
independent, these operations do not change the code. The resulting generator matrix
is

G =

 1 1 1 0 0
1 1 0 1 0
1 1 0 0 1


So a parity check matrix can be readily obtained as

H =

(
1 0 1 1 1
0 1 1 1 1

)

2. Suppose v ∈ C. Then v is orthogonal to every vector in C⊥. In particular, it is
orthogonal to basis vectors of C⊥ (rows of H)

Hence v.HT = 0

Suppose v.HT = 0

⇒ v.hT = 0 ∀ h ∈ C⊥ (as h ∈ C⊥ ⇒ h = HTλ for some vector λ)

⇒ v ∈ (C⊥)⊥

Every vector in C is orthogonal to every vector in C⊥

So C ⊆ (C⊥)⊥

But if dimension of C is k, we know that the dimension of C⊥ is n− k.
Hence dimension of (C⊥)⊥ is k.

So C and (C⊥)⊥ have same finite dimension and hence C = (C⊥)⊥

And as v.HT = 0 ⇒ v ∈ (C⊥)⊥, it means v ∈ C
So, v ∈ C ⇔ v.HT = 0.



3. Let dimension of C be k. Then dimension of C⊥ is n− k.

But if C = C⊥, then k = n− k
⇒ n = 2k, an even number

And dimension of C is k = n
2

4. Let v ∈ C. Since C = C⊥, v ∈ C⊥. Then v · vT = 0.

But v · vT = wH(v) mod 2 where wH(·) is the Hamming weight function.

So v · vT = 0⇒ v has even weight.

Also, if 1 = (1 1 1 1 . . . 1), then v ·1T is the same as wH(v) mod 2 which is 0 for all
v ∈ C. So 1 will belong to C⊥ which means it belongs to C.

5. Let Ci be the set of all codewords in C with weight i

Then, we show that f : Ci → Cn−i defined as f(v)=1+v ∀ v ∈ Ci is a one-one
correspondence between Ci and Cn−i

f is one-one

suppose f(v1) = f(v2) for some v1 6= v2

⇒ 1 + v1 = 1 + v2

⇒ v1 = v2, a contradiction

so f is one-one

f is onto

Let v ∈ Cn−i Then v has weight n− i
As 1 ∈ Cand v ∈ C, 1 + v also is in C

And 1 + v will have weight i

⇒ 1 + v ∈ Ci

⇒ f is onto

Hence f is a one-one correspondence and so |ci| = |cn−i|

i.e., Ai(c) = An−i(c)

6. Let A be the set of all positions at which u and v differ

(A = {i : u(i) 6= v(i)})
Let w be any n-tuple.

Let B be the set of positions among A,where

u,w differ (B = {i : i ∈ A, u(i) 6= w(i)})
so B ⊆ A.

And u and w have equal values at A ∩Bc positions.

⇒ w and v differ at A ∩Bc positions

(i ∈ A ∩Bc ⇒ w(i) 6= v(i))
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so d(u,w) ≥ |B| and d(w, v) ≥ |A ∩Bc| = |A| − |B|
so d(u,w) + d(w, v) ≥ |B|+ (|A| − |B|) = |A| = d(u, v)

7. As the channel is a BSC with p < 1/2, minimum distance decoding is the optimal
decoding. So we choose the error patterns(correctable) to be of least Hamming weight.

000000 011100 101010 110001 110110 101101 011011 000111
000001 011101 101011 110000 110111 101100 011010 000110
000010 011110 101000 110011 110100 101111 011001 000101
000100 011000 101110 110101 110010 101001 011111 000011
001000 010100 100010 111001 111110 100101 010011 001111
010000 001100 111010 100001 100110 111101 001011 010111
100000 111100 001010 010001 010110 001101 111011 100111
010010 001110 111000 100011 100100 111111 001001 010101

G = [KI], with

K =

0 1 1
1 0 1
1 1 0


So parity check matrix

H = [I KT ] =

1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 0


Error → 000000 000001 000010 000100 001000 010000 100000

Syndrome→ 000 110 101 011 001 010 100

Error → 010010
Syndrome → 111

All weight 1 errors can be detected,(and corrected) but only one weight 2 error can
be corrected.

8. Let ei denote 00 . . . 0︸ ︷︷ ︸
(n-i)times

11 . . . 1︸ ︷︷ ︸
i times

0 ≤ i ≤ n

For a linear code to decode all error patterns ei correctly, we need their syndrome to
be distinct

i.e., if H is the parity check matrix of the code,

then H.eTi 6= H.eTj whenever i 6= j 0 ≤ i, j ≤ n.

i.e., H.(eTi − eTj ) 6= 0

i.e., 00 . . . 0︸ ︷︷ ︸
p

11 . . . 1︸ ︷︷ ︸
q

00 . . . 0︸ ︷︷ ︸
r

/∈ C for any p,q,r 6= 0.

So no m consecutive columns of H can add upto zero, for all 1 ≤ m ≤ n.

Any H satisfying above condition, will give a code that can correct all given error
patterns
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Let r be smallest integer such that (n+ 1) ≤ 2r.

We need the code to correct all errors ei 0 ≤ i ≤ n.

So (n+ 1) ≤ 2(n−k). So, for largest rate we need (n− k) = r.

We now show that such a H (r × n matrix) can be constructed.

We construct H by gradually adding columns (n times) from the end.

The first column can be any random r-tuple

Whenever we add a new column, we ensure that any m consecutive columns,starting
with this new column, do not add upto zero, for all m i.e., let there be t columns
C1, C2, ..., Ct and we are adding a new column Ct+1

then
∑t+1

i=mCi 6= 0 ∀ 1 ≤ m ≤ (t+ 1)

So Ct+1 6=
∑t+1

i=mCi ∀ 1 ≤ m ≤ t and Ct+1 6= 0

So there atmost (t+ 1) vectors that are not permitted to be used as Ct+1

But (t+ 1) ≤ n < 2r

So there will always exist an r-tuple satisfying above conditions.

So, starting with any random non-zero column, we can keep adding columns, while
ensuring above conditions to finally give a (r×n) matrix. From the construction, we
can see that this matrix will satisfy condition 1 and hence a code with this as positive
check matrix can correct the given error patterns.

For n=7, n+1=8 ≤ 23 So r=3.

We construct a 3 × 7 matrix by adding 3-tuples, satisfying conditions given before

We start with C1 = (0 0 1)T

C2 6= (0 0 1)T or (0 0 0)T . So let C2 = (0 1 0)T

Now, C3 6= C2 or C1 + C2 or 0

So C3 6= (0 1 0)T or (0 1 1)T or (0 0 0)T

So, let C3 = (1 0 0)T

And C4 6= C3 or C3 + C2 or C3 + C2 + C1 or 0

So, let C4 = (0 0 1)T

Proceeding similarly, we finally get

H =

 1 0 0 0 1 0 0
1 0 1 0 0 1 0
1 1 0 1 0 0 1
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