EE 605: Error Correcting Codes
Instructor: Saravanan Vijayakumaran
Indian Institute of Technology Bombay
Autumn 2010

Assignment 4: $\mathbf{2 4}$ points
Due date: October 7, 2010
Each of the following exercises is worth 3 points. Every nontrivial step in a proof should be accompanied by justification.

1. Find the parity check matrix H for a linear binary code with generator matrix

$$
G=\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1
\end{array}\right]
$$

2. Let C be a linear (n, k) block code with parity check matrix H. Prove that an n-tuple $\mathbf{v} \in C$ if and only if $\mathbf{v} \cdot H^{T}=\mathbf{0}$.
3. Let C be a linear block code and C^{\perp} be its dual code. A code is said to be self-dual if $C=C^{\perp}$. Prove that a linear self-dual code has even length n and dimension $\frac{n}{2}$.
4. Let C be a linear block code and C^{\perp} be its dual code. A code is said to be selforthogonal if $C \subset C^{\perp}$. Prove that each codeword in a binary self-orthogonal code C has even weight and C^{\perp} contains the all-ones codeword $1=111 \cdots 1$.
5. Let C be a binary linear (n, k) block code. If C contains the codeword $\mathbf{1}=111 \cdots 1$, then prove that $A_{i}(C)=A_{n-i}(C)$ for $0 \leq i \leq n$ where $A_{i}(C)$ is the number of codewords in C of weight i.
6. Prove that the Hamming distance satisfies the triangle inequality, i.e. $d(\mathbf{u}, \mathbf{v}) \leq$ $d(\mathbf{u}, \mathbf{w})+d(\mathbf{w}, \mathbf{v})$ for all n-tuples $\mathbf{u}, \mathbf{v}, \mathbf{w}$.
7. Construct the standard array for a binary linear block code with the following generator matrix if it is to be used over a binary symmetric channel with crossover probability $p<\frac{1}{2}$.

$$
G=\left[\begin{array}{llllll}
0 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Construct the syndrome-error pattern lookup table for this code, i.e. a one-to-one mapping between the set of syndromes and set of correctable error patterns. Can this code correct all error patterns of weight 1? Weight 2?
8. Suppose a binary channel accepts codewords of lenght n and that the only error patterns which can occur are i zeros followed by j ones where $i \geq 0, j \geq 0$ and $i+j=n$. For $n=6$, the possible error patterns are 000000, 000001, 000011, 000111, 001111, 011111, 111111. Design a binary linear (n, k) code that will correct all such error patterns while having rate as large as possible. Illustrate your construction for $n=7$.

