EE 605: Error Correcting Codes

Instructor: Saravanan Vijayakumaran
Indian Institute of Technology Bombay
Autumn 2010

1. Construct the standard array for a binary linear block code with the following generator matrix if we want to minimize the average probability of error when the channel is a binary symmetric channel with crossover probability $p<\frac{1}{2}$.

$$
G=\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Construct the syndrome-error pattern lookup table for this code.
2. Find the number of codewords of weight 4 in a binary linear block code with the following generator matrix.

$$
G=\left[\begin{array}{lllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

3. Consider the $(7,4)$ Hamming code with parity check matrix

$$
H=\left[\begin{array}{lllllll}
1 & 1 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 & 1
\end{array}\right]
$$

(a) If the syndrome corresponding to a received vector is (110), what is the estimated error pattern?
(b) If a transmitted codeword is corrupted by the error pattern (1000010), what is the syndrome?
4. Let $g(X)=1+g_{1}(X)+\cdots+g_{r-1} X^{r-1}+X^{r}$ be the non-zero code polynomial of minimum degree in an (n, k) binary cyclic code C. Prove that a binary polynomial of degree $n-1$ or less is a code polynomial if and only if it is a multiple of $g(X)$.

