EE 605: Error Correcting Codes
 Instructor: Saravanan Vijayakumaran
 Indian Institute of Technology Bombay
 Autumn 2011

Assignment 1: 20 points
Due date: August 4, 2010
Each of the following exercises is worth 5 points. Every nontrivial step in a proof should be accompanied by justification.

1. Prove that the Hamming distance satisfies the triangle inequality, i.e. $d(\mathbf{u}, \mathbf{v}) \leq$ $d(\mathbf{u}, \mathbf{w})+d(\mathbf{w}, \mathbf{v})$ for all n-tuples $\mathbf{u}, \mathbf{v}, \mathbf{w}$.
2. Calculate the crossover probability of the binary symmetric channel which is equivalent to the system below.

3. Derive the optimal decoding rule for a $2 n$-repetition code for use over a binary symmetric channel with crossover probability p. Is the optimal decoding rule unique? Calculate the average probability of error for this code when the optimal decoding rule is used.
4. Consider a binary block code C of length n having minimum distance $d_{\text {min }}$ where $d_{\text {min }}$ is an odd integer. Show that when a overall parity bit is added to all the codewords in C we obtain a code of length $n+1$ and minimum distance $d_{\min }+1$.
