EE 605: Error Correcting Codes Instructor: Saravanan Vijayakumaran Indian Institute of Technology Bombay Autumn 2011

Assignment 2 : 20 points

Due date: August 30, 2011

Each of the following exercises is worth 5 points. Every nontrivial step in a proof should be accompanied by justification.

1. Construct the standard array and syndrome decoding table for the (7, 4) linear block code with generator matrix

[1	0	0	0	0	1	1
0	1	0	0	1	0	1
0	0	1	0	1	1	0
0	0	0	1	1	1	1

- 2. A burst error of length l is an error pattern which causes l consecutive locations in the transmitted code to be corrupted. Let H be the parity check matrix of a binary linear block code.
 - (a) What is the necessary and sufficient condition on the columns of H so that every burst error of length up to t can be detected?
 - (b) What is the necessary and sufficient condition on the columns of H so that every burst error of length up to t can be corrected?
- 3. Let C be (n, k) linear code. Let T be a set of coordinates of the codewords i.e. $T \subseteq \{1, 2, ..., n\}$. Let C^T be the code obtained by puncturing C on the coordinates in T and let C_T be the code obtained by shortening C on the coordinates in T. Prove that
 - (a) $(C^{\perp})_T = (C^T)^{\perp}$
 - (b) $(C^{\perp})^T = (C_T)^{\perp}$
- 4. Let C_1 be a (n_1, k_1) binary linear block code with minimum distance d_1 and let C_2 be a (n_2, k_2) binary linear block code with minimum distance d_2 . The direct sum of C_1 and C_2 is defined as

$$C_1 \oplus C_2 = \{ (\mathbf{c}_1, \mathbf{c}_2) \| \mathbf{c}_1 \in C_1, \mathbf{c}_2 \in C_2 \}.$$

Show that $C_1 \oplus C_2$ is a $(n_1 + n_2, k_1 + k_2)$ linear block code with minimum distance $\min(d_1, d_2)$. Derive the generator matrix of $C_1 \oplus C_2$ in terms of the generator matrices of C_1 and C_2 . Derive the parity check matrix of $C_1 \oplus C_2$ in terms of the parity check matrices of C_1 and C_2 .