EE 605: Error Correcting Codes Instructor: Saravanan Vijayakumaran Indian Institute of Technology Bombay Autumn 2011

Solution to Assignment 4

1. Let \mathbb{F}_{16} be the field generated by $p(X) = 1 + X + X^4$. Let α be a primitive element of \mathbb{F}_{16} which is a root of p(X). Devise a circuit which is capable of multiplying any element in \mathbf{F}_{16} by α^7 .

Solution: Any element in the field \mathbb{F}_{16} can be represented as $a_0 + a_1\alpha + a_2\alpha^2 + a_3\alpha^3$. If we multiply this element by α^7 , we get the element $a_0\alpha^7 + a_1\alpha^8 + a_2\alpha^9 + a_3\alpha^{10}$. We have the following identities.

- $\alpha^7 = \alpha^3 + \alpha + 1$
- $\alpha^8 = \alpha^2 + 1$
- $\alpha^9 = \alpha^3 + \alpha$
- $\alpha^{10} = \alpha^2 + \alpha + 1$

Using these identities, the product can be written as

$$a_{0}\alpha^{7} + a_{1}\alpha^{8} + a_{2}\alpha^{9} + a_{3}\alpha^{10} = a_{0}(\alpha^{3} + \alpha + 1) + a_{1}(\alpha^{2} + 1) + a_{2}(\alpha^{3} + \alpha) + a_{3}(\alpha^{2} + \alpha + 1)$$
$$= a_{0} + a_{1} + a_{3} + (a_{0} + a_{2} + a_{3})\alpha + (a_{1} + a_{3})\alpha^{2} + (a_{0} + a_{2})\alpha^{3}$$

The circuit for multiplication by α^7 can be now obtained by taking a register containing a_0, a_1, a_2, a_3 and using XOR gates to obtain $a_0 + a_1 + a_3, a_0 + a_2 + a_3, a_1 + a_3$ and $a_0 + a_2$.

2. Consider a *t*-error-correcting binary BCH code of length $n = 2^m - 1$. If 2t+1 is a factor of n, prove that the minimum distance of the code is exactly 2t + 1. You can assume the BCH bound in your solution $(d_{min} \ge 2t + 1)$. (*Hint:* Let n = l(2t + 1). Show that $\frac{X^n+1}{X^l+1}$ is a code polynomial of weight 2t + 1. Remember that a code polynomial has $\alpha, \alpha^2, \ldots, \alpha^{2t}$ as roots where α is a primitive element of \mathbb{F}_{2^m} which has order $n = 2^m - 1$.)

Solution: Since the BCH bound gives us $d_{min} \ge 2t + 1$, we will be done if we can show the existence of a codeword whose weight is equal to 2t + 1. Let $Y = X^{l}$. The we have the following identities.

$$\frac{X^n + 1}{X^l + 1} = \frac{X^{l(2t+1)} + 1}{X^l + 1} = \frac{Y^{2t+1} + 1}{Y + 1} = 1 + Y + Y^2 + \dots + Y^{2t}$$
$$= 1 + X^l + X^{2l} + \dots + X^{2tl}$$

So we can see that $c(X) = \frac{X^n+1}{X^l+1}$ is a polynomial of weight 2t + 1. We have

$$c(\alpha) = \frac{\alpha^n + 1}{\alpha^l + 1} = \frac{1+1}{\alpha^l + 1} = 0$$

The above calculation is valid since the denominator $\alpha^l + 1 \neq 0$ due to the fact that $l < n = 2^m - 1$ and α has order $2^m - 1$ (note that $t \geq 1$). Similarly, we get

$$c(\alpha^{i}) = \frac{\alpha^{ni} + 1}{\alpha^{li} + 1} = \frac{1+1}{\alpha^{li} + 1} = 0$$

for i = 2, 3, ..., 2t since 2tl < n. Hence c(X) is a codeword of weight 2t + 1.

3. Prove that the dual of a Reed-Solomon code is a Reed-Solomon code. (*Hint*: The dual code of an (n, k) cyclic code with generator polynomial g(X) has generator polynomial $X^kh(X^{-1})$ where $h(X) = \frac{X^n - 1}{g(X)}$.)

Solution: Consider a *t*-error correcting Reed-Solomon code over a field \mathbb{F}_q . Then the length of the codewords is n = q-1. It has a generator polynomial $g(X) = \prod_{i=1}^{2t} (X - \alpha^i)$ where α is a primitive element of \mathbb{F}_q . In any field $X^{q-1} - 1 = \prod_{i=0}^{q-2} (X - \alpha^i)$ and consequently we have

$$h(X) = \frac{X^n - 1}{g(X)} = \frac{X^{q-1} - 1}{g(X)} = (X - 1) \prod_{i=2t+1}^{q-2} (X - \alpha^i) = \prod_{i=2t+1}^{q-1} (X - \alpha^i)$$

since $\alpha^{q-1} = 1$. Here the degree of h(X) is k (remember that the degree of the generator polynomial of an (n, k) cyclic code is n-k). Then the generator polynomial of the dual code is given by

$$X^{k}h(X^{-1}) = \prod_{i=2t+1}^{q-1} (1 - \alpha^{i}X).$$

Since $\alpha^{q-1} = 1$, the generator polynomial of the dual code has roots α^{q-2t-2} , α^{q-2t-1} , ..., α^{q-1} . Thus the dual code is a Reed-Solomon code (see comment in Moodle for the definition of a general RS code).

- 4. Consider a (2, 1) convolutional code with encoder matrix $G(D) = \begin{bmatrix} 1 + D^2 & 1 + D + D^2 + D^3 \end{bmatrix}$.
 - (a) Draw the encoder circuit.
 - (b) Draw the encoder state diagram.
 - (c) Is this encoder catastrophic? If yes, find an infinite weight information sequence which generates a codeword of finite weight.

Solution: The encoder is catastrophic since the greatest common divisor of the polynomials is $1 + D^2$ which is not of the form D^l . Consider the all ones infinite length information sequence whose polynomial representation is given by $1 + D + D^2 + D^3 + \cdots = \frac{1}{1+D}$. The output corresponding to this input is $v(D) = \frac{1}{1+D}G(D) = \begin{bmatrix} 1 + D & 1 + D^2 \end{bmatrix}$.