EE 605: Error Correcting Codes
 Instructor: Saravanan Vijayakumaran
 Indian Institute of Technology Bombay
 Autumn 2011

$\underline{\text { Solution to Assignment } 4}$

1. Let \mathbb{F}_{16} be the field generated by $p(X)=1+X+X^{4}$. Let α be a primitive element of \mathbb{F}_{16} which is a root of $p(X)$. Devise a circuit which is capable of multiplying any element in \mathbf{F}_{16} by α^{7}.
Solution: Any element in the field \mathbb{F}_{16} can be represented as $a_{0}+a_{1} \alpha+a_{2} \alpha^{2}+a_{3} \alpha^{3}$. If we multiply this element by α^{7}, we get the element $a_{0} \alpha^{7}+a_{1} \alpha^{8}+a_{2} \alpha^{9}+a_{3} \alpha^{10}$. We have the following identities.

- $\alpha^{7}=\alpha^{3}+\alpha+1$
- $\alpha^{8}=\alpha^{2}+1$
- $\alpha^{9}=\alpha^{3}+\alpha$
- $\alpha^{10}=\alpha^{2}+\alpha+1$

Using these identities, the product can be written as

$$
\begin{aligned}
a_{0} \alpha^{7}+a_{1} \alpha^{8}+a_{2} \alpha^{9}+a_{3} \alpha^{10} & =a_{0}\left(\alpha^{3}+\alpha+1\right)+a_{1}\left(\alpha^{2}+1\right)+a_{2}\left(\alpha^{3}+\alpha\right)+a_{3}\left(\alpha^{2}+\alpha+1\right) \\
& =a_{0}+a_{1}+a_{3}+\left(a_{0}+a_{2}+a_{3}\right) \alpha+\left(a_{1}+a_{3}\right) \alpha^{2}+\left(a_{0}+a_{2}\right) \alpha^{3}
\end{aligned}
$$

The circuit for multiplication by α^{7} can be now obtained by taking a register containing $a_{0}, a_{1}, a_{2}, a_{3}$ and using XOR gates to obtain $a_{0}+a_{1}+a_{3}, a_{0}+a_{2}+a_{3}, a_{1}+a_{3}$ and $a_{0}+a_{2}$.
2. Consider a t-error-correcting binary BCH code of length $n=2^{m}-1$. If $2 t+1$ is a factor of n, prove that the minimum distance of the code is exactly $2 t+1$. You can assume the BCH bound in your solution $\left(d_{\min } \geq 2 t+1\right.$). (Hint: Let $n=l(2 t+1)$. Show that $\frac{X^{n}+1}{X^{l}+1}$ is a code polynomial of weight $2 t+1$. Remember that a code polynomial has $\alpha, \alpha^{2}, \ldots, \alpha^{2 t}$ as roots where α is a primitive element of $\mathbb{F}_{2^{m}}$ which has order $n=2^{m}-1$.)

Solution: Since the BCH bound gives us $d_{\text {min }} \geq 2 t+1$, we will be done if we can show the existence of a codeword whose weight is equal to $2 t+1$. Let $Y=X^{l}$. The we have the following identities.

$$
\begin{aligned}
\frac{X^{n}+1}{X^{l}+1} & =\frac{X^{l(2 t+1)}+1}{X^{l}+1}=\frac{Y^{2 t+1}+1}{Y+1}=1+Y+Y^{2}+\cdots+Y^{2 t} \\
& =1+X^{l}+X^{2 l}+\cdots+X^{2 t l}
\end{aligned}
$$

So we can see that $c(X)=\frac{X^{n}+1}{X^{l}+1}$ is a polynomial of weight $2 t+1$. We have

$$
c(\alpha)=\frac{\alpha^{n}+1}{\alpha^{l}+1}=\frac{1+1}{\alpha^{l}+1}=0 .
$$

The above calculation is valid since the denominator $\alpha^{l}+1 \neq 0$ due to the fact that $l<n=2^{m}-1$ and α has order $2^{m}-1$ (note that $t \geq 1$). Similarly, we get

$$
c\left(\alpha^{i}\right)=\frac{\alpha^{n i}+1}{\alpha^{l i}+1}=\frac{1+1}{\alpha^{l i}+1}=0
$$

for $i=2,3, \ldots, 2 t$ since $2 t l<n$. Hence $c(X)$ is a codeword of weight $2 t+1$.
3. Prove that the dual of a Reed-Solomon code is a Reed-Solomon code. (Hint: The dual code of an (n, k) cyclic code with generator polynomial $g(X)$ has generator polynomial $X^{k} h\left(X^{-1}\right)$ where $h(X)=\frac{X^{n}-1}{g(X)}$.)
Solution: Consider a t-error correcting Reed-Solomon code over a field \mathbb{F}_{q}. Then the length of the codewords is $n=q-1$. It has a generator polynomial $g(X)=\prod_{i=1}^{2 t}(X-$ α^{i}) where α is a primitive element of \mathbb{F}_{q}. In any field $X^{q-1}-1=\prod_{i=0}^{q-2}\left(X-\alpha^{i}\right)$ and consequently we have

$$
h(X)=\frac{X^{n}-1}{g(X)}=\frac{X^{q-1}-1}{g(X)}=(X-1) \prod_{i=2 t+1}^{q-2}\left(X-\alpha^{i}\right)=\prod_{i=2 t+1}^{q-1}\left(X-\alpha^{i}\right)
$$

since $\alpha^{q-1}=1$. Here the degree of $h(X)$ is k (remember that the degree of the generator polynomial of an (n, k) cyclic code is $n-k)$. Then the generator polynomial of the dual code is given by

$$
X^{k} h\left(X^{-1}\right)=\prod_{i=2 t+1}^{q-1}\left(1-\alpha^{i} X\right)
$$

Since $\alpha^{q-1}=1$, the generator polynomial of the dual code has roots $\alpha^{q-2 t-2}, \alpha^{q-2 t-1}$, \ldots, α^{q-1}. Thus the dual code is a Reed-Solomon code (see comment in Moodle for the definition of a general RS code).
4. Consider a $(2,1)$ convolutional code with encoder matrix $G(D)=\left[\begin{array}{ll}1+D^{2} & 1+D+D^{2}+D^{3}\end{array}\right]$.
(a) Draw the encoder circuit.
(b) Draw the encoder state diagram.
(c) Is this encoder catastrophic? If yes, find an infinite weight information sequence which generates a codeword of finite weight.
Solution: The encoder is catastrophic since the greatest common divisor of the polynomials is $1+D^{2}$ which is not of the form D^{l}. Consider the all ones infinite length information sequence whose polynomial representation is given by $1+D+D^{2}+D^{3}+\cdots=\frac{1}{1+D}$. The output corresponding to this input is $v(D)=\frac{1}{1+D} G(D)=\left[\begin{array}{ll}1+D & 1+D^{2}\end{array}\right]$.

