EE 605: Error Correcting Codes
 Instructor: Saravanan Vijayakumaran
 Indian Institute of Technology Bombay
 Autumn 2011

Assignment 4: $\mathbf{2 0}$ points
Due date: November 11, 2011
Each of the following exercises is worth 5 points. Every nontrivial step in a proof should be accompanied by justification.

1. Let \mathbb{F}_{16} be the field generated by $p(X)=1+X+X^{4}$. Let α be a primitive element of \mathbb{F}_{16} which is a root of $p(X)$. Devise a circuit which is capable of multiplying any element in \mathbf{F}_{16} by α^{7}.
2. Consider a t-error-correcting binary BCH code of length $n=2^{m}-1$. If $2 t+1$ is a factor of n, prove that the minimum distance of the code is exactly $2 t+1$. You can assume the BCH bound in your solution $\left(d_{\min } \geq 2 t+1\right)$. (Hint: Let $n=l(2 t+1)$. Show that $\frac{X^{n}+1}{X^{l}+1}$ is a code polynomial of weight $2 t+1$. Remember that a code polynomial has $\alpha, \alpha^{2}, \ldots, \alpha^{2 t}$ as roots where α is a primitive element of $\mathbb{F}_{2^{m}}$ which has order $n=2^{m}-1$.)
3. Prove that the dual of a Reed-Solomon code is a Reed-Solomon code. (Hint: The dual code of an (n, k) cyclic code with generator polynomial $g(X)$ has generator polynomial $X^{k} h\left(X^{-1}\right)$ where $h(X)=\frac{X^{n}-1}{g(X)}$.)
4. Consider a $(2,1)$ convolutional code with encoder matrix $G(D)=\left[\begin{array}{ll}1+D^{2} & 1+D+D^{2}+D^{3}\end{array}\right]$.
(a) Draw the encoder circuit.
(b) Draw the encoder state diagram.
(c) Is this encoder catastrophic? If yes, find an infinite weight information sequence which generates a codeword of finite weight.
