EE 605: Error Correcting Codes

Instructor: Saravanan Vijayakumaran
Indian Institute of Technology Bombay
Autumn 2011

Midsemester Exam : 30 points
Duration: 120 minutes
Each of the following questions is worth 5 points.

1. Construct the standard array and syndrome decoding table for the $(6,3)$ binary linear block code with generator matrix

$$
\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 0
\end{array}\right]
$$

Decode the following received vectors using the syndrome table generated.
(a) 110110
(b) 110111
(c) 110001
2. Consider a binary linear code with generator matrix

$$
G=\left[\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right]
$$

Suppose N codewords from this code are sent over a binary symmetric channel with crossover probability p. What is the probability that no undetected errors occur during this transmission?
3. State and prove the Singleton bound for binary block codes.
4. Let C_{1} be an $\left(n, k_{1}\right)$ binary linear block code with minimum distance d_{1} and let C_{2} be an $\left(n, k_{2}\right)$ binary linear block code with minimum distance d_{2}. Consider the following set of $2 n$-tuples

$$
C=\left\{(\mathbf{u}, \mathbf{u}+\mathbf{v}) \mid \mathbf{u} \in C_{1}, \mathbf{v} \in C_{2}\right\} .
$$

Prove that the set C is a binary linear block code with dimension $k=k_{1}+k_{2}$ and minimum distance $d_{\text {min }}=\min \left\{2 d_{1}, d_{2}\right\}$.
5. Let C_{1} and C_{2} be two cyclic codes of same length n with generator polynomials $g_{1}(X)$ and $g_{2}(X)$ respectively. Show that $C_{1} \subseteq C_{2}$ if and only if $g_{2}(X)$ divides $g_{1}(X)$.
6. Let C_{1} and C_{2} be two cyclic codes of same length n with generator polynomials $g_{1}(X)$ and $g_{2}(X)$ respectively. Show that $C_{1} \cap C_{2}$ is a cyclic code. What is its generator poynomial?

