EE 605: Error Correcting Codes Instructor: Saravanan Vijayakumaran Indian Institute of Technology Bombay Autumn 2011

Midsemester Exam : 30 points

Duration: 120 minutes

Each of the following questions is worth 5 points.

1. Construct the standard array and syndrome decoding table for the (6,3) binary linear block code with generator matrix

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$

Decode the following received vectors using the syndrome table generated.

- (a) 110110
- (b) 110111
- (c) 110001
- 2. Consider a binary linear code with generator matrix

$$G = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

Suppose N codewords from this code are sent over a binary symmetric channel with crossover probability p. What is the probability that no undetected errors occur during this transmission?

- 3. State and prove the Singleton bound for binary block codes.
- 4. Let C_1 be an (n, k_1) binary linear block code with minimum distance d_1 and let C_2 be an (n, k_2) binary linear block code with minimum distance d_2 . Consider the following set of 2n-tuples

$$C = \{ (\mathbf{u}, \mathbf{u} + \mathbf{v}) | \mathbf{u} \in C_1, \mathbf{v} \in C_2 \}.$$

Prove that the set C is a binary linear block code with dimension $k = k_1 + k_2$ and minimum distance $d_{min} = \min\{2d_1, d_2\}$.

- 5. Let C_1 and C_2 be two cyclic codes of same length n with generator polynomials $g_1(X)$ and $g_2(X)$ respectively. Show that $C_1 \subseteq C_2$ if and only if $g_2(X)$ divides $g_1(X)$.
- 6. Let C_1 and C_2 be two cyclic codes of same length n with generator polynomials $g_1(X)$ and $g_2(X)$ respectively. Show that $C_1 \cap C_2$ is a cyclic code. What is its generator polynomial?