EE 605: Error Correcting Codes

Instructor: Saravanan Vijayakumaran
Indian Institute of Technology Bombay
Autumn 2011

Quiz 3: 10 points
Duration: 60 minutes

1. (a) Using the field \mathbb{F}_{16} generated by the primitive polynomial $p(X)=X^{4}+X^{3}+1$, determine the generator polynomial of the double error correcting binary BCH code of length 15. The power and remainder representations of the field elements in \mathbb{F}_{16} in terms of a primitive element α are given below.

0	0
1	1
α	α
α^{2}	α^{2}
α^{3}	α^{3}
α^{4}	$\alpha^{3}+1$
α^{5}	$\alpha^{3}+\alpha+1$
α^{6}	$\alpha^{3}+\alpha^{2}+\alpha+1$
α^{7}	$\alpha^{2}+\alpha+1$
α^{8}	$\alpha^{3}+\alpha^{2}+\alpha$
α^{9}	$\alpha^{2}+1$
α^{10}	$\alpha^{3}+\alpha$
α^{11}	$\alpha^{3}+\alpha^{2}+1$
α^{12}	$\alpha+1$
α^{13}	$\alpha^{2}+\alpha$
α^{14}	$\alpha^{3}+\alpha^{2}$

(b) Suppose for the BCH code described above the error locator polynomial found by the Berlekamp-Massey algorithm is $\sigma(X)=1+\alpha^{10} X+\alpha^{12} X^{2}$. If the all zeros codeword was sent, determine a received vector $\mathbf{r}=\left[\begin{array}{llll}r_{0} & r_{1} & \cdots & r_{n-1}\end{array}\right]$ which results in this error locator polynomial.
[3 points]
2. Determine the generator polynomial of a double error correcting Reed-Solomon code with symbols from \mathbb{F}_{16}. Assume a primitive element α for \mathbb{F}_{16} whose minimal polynomial is $p(X)=X^{4}+X^{3}+1$ (you can use the table above for calculations involving $\alpha)$. What is the codeword corresponding to the following information bits? points]

$$
\mathbf{u}=\left[\begin{array}{llllll}
0001 & 0001 & 0000 & 0000 & \cdots & 0000
\end{array}\right]
$$

