EE 605: Error Correcting Codes (Autumn 2014)

Instructor: Saravanan Vijayakumaran
Indian Institute of Technology Bombay
Assignment 2: 20 points

1. [5 points] An (n, k) binary block code is used to transmit k-bit messages over a binary symmetric channel with crossover probability $p<\frac{1}{2}$. All the k-bit messages are equally likely. Show that the minimum distance decoder maximizes the probability of correct decision.
2. [5 points] Prove that for a binary block code with minimum distance $d_{\text {min }}$, the minimum distance decoder can correct upto $\left\lfloor\frac{d_{\text {min }}-1}{2}\right\rfloor$ errors.
3. [5 points] Let p be a prime number. Prove that the set $\mathbb{F}_{p}=\{0,1,2, \ldots, p-1\}$ is a field under integer addition and multiplication modulo p. Give an example to show that \mathbb{F}_{p} is not a field if p is composite.
4. [5 points] Let S be a nonempty subset of a vector space V over a field F. Prove that S is a subspace of V if

- For any $\mathbf{u}, \mathbf{v} \in S, \mathbf{u}+\mathbf{v}$ also belongs to S.
- For any $a \in F$ and $\mathbf{u} \in S, a \cdot \mathbf{u}$ is also in S.

