Assignment 2: 20 points

- 1. [5 points] An (n, k) binary block code is used to transmit k-bit messages over a binary symmetric channel with crossover probability $p < \frac{1}{2}$. All the k-bit messages are equally likely. Show that the minimum distance decoder maximizes the probability of correct decision.
- 2. [5 points] Prove that for a binary block code with minimum distance d_{min} , the minimum distance decoder can correct up to $\lfloor \frac{d_{min}-1}{2} \rfloor$ errors.
- 3. [5 points] Let p be a prime number. Prove that the set $\mathbb{F}_p = \{0, 1, 2, \dots, p-1\}$ is a field under integer addition and multiplication modulo p. Give an example to show that \mathbb{F}_p is not a field if p is composite.
- 4. [5 points] Let S be a nonempty subset of a vector space V over a field F. Prove that S is a subspace of V if
 - For any $\mathbf{u}, \mathbf{v} \in S$, $\mathbf{u} + \mathbf{v}$ also belongs to S.
 - For any $a \in F$ and $\mathbf{u} \in S$, $a \cdot \mathbf{u}$ is also in S.