Assignment 3: 20 points

- 1. [5 points] Prove that the *n*-repetition code and the (n, n-1) single parity check code are the dual codes of each other.
- 2. [5 points] Prove that $(C^{\perp})^{\perp} = C$ when C is a linear block code. *Hint:* dim $C + \dim C^{\perp} = n$ where n is codeword length.
- 3. [5 points] Let the generator matrix of an (n, k) binary linear block code C be of the form $\begin{bmatrix} I_k & P \end{bmatrix}$ where I_k is the $k \times k$ identity matrix and P is a $k \times n k$ matrix. Show that $\begin{bmatrix} P^T & I_{n-k} \end{bmatrix}$ is a parity check matrix for C.
- 4. [5 points] Let C be a linear block code with parity check matrix **H**. Prove that

 $\mathbf{v} \in C \iff \mathbf{v} \cdot \mathbf{H}^T = \mathbf{0}$