EE 605: Error Correcting Codes (Autumn 2014)
 Instructor: Saravanan Vijayakumaran
 Indian Institute of Technology Bombay

Assignment 4: 20 points
Due Date: September 18, 2014

1. [5 points] Let \mathbf{H} be the parity check matrix of a Hamming code of length $n=2^{m}-1$. Consider a matrix \mathbf{H}^{\prime} obtained by removing all columns of even weight from \mathbf{H}. Let C be the code whose parity check matrix is \mathbf{H}^{\prime} ?
(a) Find the length and dimension of C.
(b) Show that C can correct all single bit errors and detect all two-bit errors.
2. [5 points] Find the generator matrices corresponding to the following Reed-Muller codes.
(a) $\mathrm{RM}(1,3)$
(b) $\mathrm{RM}(2,3)$
(c) $\mathrm{RM}(1,4)$
3. [10 points] Suppose a codeword from the $\operatorname{RM}(2,4)$ code is transmitted over a noisy channel and the vector $\left[\begin{array}{llllllllllllllll}1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0\end{array}\right]$ is received. Write down the steps of majority-logic decoding and find the 11 -bit transmitted message.
