- 1. [10 points] For an (n, k) binary cyclic code, show the following.
 - (a) The fraction of undetectable bursts of length n k + 1 is $2^{-(n-k-1)}$.
 - (b) For m > n k + 1, the fraction of undetectable bursts of length m is $2^{-(n-k)}$.
- 2. [10 points] Let $\mathbf{g}(X)$ be the generator polynomial of an (n, k) binary cyclic code C. The code polynomials $\mathbf{v}(X)$ are multiples of $\mathbf{g}(X)$ of degree n - 1 or less

$$\mathbf{v}(X) = \mathbf{u}(X)\mathbf{g}(X)$$

where $\mathbf{u}(X) = u_0 + u_1 X + u_2 X^2 + \dots + u_{k-1} X^{k-1}$ is the message polynomial.

Consider the code polynomials generated by message polynomials of degree k - l - 1 or less where l < k, i.e. $u_{k-l} = u_{k-l+1} = \cdots = u_{k-1} = 0$. There are 2^{k-l} such code polynomials which have degree n - l - 1 or less. They form a (n - l, k - l) linear block code called the shortened cyclic code and it is not a cyclic code.

If $\mathbf{g}(X) = (X+1)\mathbf{p}(X)$ where $\mathbf{p}(X)$ is a primitive polynomial of degree *m* where $n = 2^m - 1$, then show the following.

- (a) The shortened cyclic code can detect all error patterns of odd weight in the codeword of length n l.
- (b) The shortened cyclic code can detect all double-bit error patterns in the codeword of length n - l.
- (c) The shortened cyclic code can detect all non-end-around burst errors of length n-k or less in the codeword of length n-l.

Note that the shortening operation destroys the cyclic property of the code. The shortened code loses the ability to detect end-around bursts of length n - k or less. But we gain the ability to have an arbitrary length and still detect double-bit errors.