1. [10 points] For an (n, k) binary cyclic code, show the following.
(a) The fraction of undetectable bursts of length $n-k+1$ is $2^{-(n-k-1)}$.
(b) For $m>n-k+1$, the fraction of undetectable bursts of length m is $2^{-(n-k)}$.
2. [10 points] Let $\mathbf{g}(X)$ be the generator polynomial of an (n, k) binary cyclic code C.

The code polynomials $\mathbf{v}(X)$ are multiples of $\mathbf{g}(X)$ of degree $n-1$ or less

$$
\mathbf{v}(X)=\mathbf{u}(X) \mathbf{g}(X)
$$

where $\mathbf{u}(X)=u_{0}+u_{1} X+u_{2} X^{2}+\cdots+u_{k-1} X^{k-1}$ is the message polynomial.
Consider the code polynomials generated by message polynomials of degree $k-l-1$ or less where $l<k$, i.e. $u_{k-l}=u_{k-l+1}=\cdots=u_{k-1}=0$. There are 2^{k-l} such code polynomials which have degree $n-l-1$ or less. They form a $(n-l, k-l)$ linear block code called the shortened cyclic code and it is not a cyclic code.
If $\mathbf{g}(X)=(X+1) \mathbf{p}(X)$ where $\mathbf{p}(X)$ is a primitive polynomial of degree m where $n=2^{m}-1$, then show the following.
(a) The shortened cyclic code can detect all error patterns of odd weight in the codeword of length $n-l$.
(b) The shortened cyclic code can detect all double-bit error patterns in the codeword of length $n-l$.
(c) The shortened cyclic code can detect all non-end-around burst errors of length $n-k$ or less in the codeword of length $n-l$.
Note that the shortening operation destroys the cyclic property of the code. The shortened code loses the ability to detect end-around bursts of length $n-k$ or less. But we gain the ability to have an arbitrary length and still detect double-bit errors.

