1. [10 points] Let F_{q} be a field with p^{m} elements where p is a prime and m is a positive integer.
(a) Prove that the minimal polynomial of a primitive element in F_{q} has degree m.
(b) A degree m irreducible polynomial in $\mathbb{F}_{p}[x]$ is said to be primitive if the smallest value of N for which it divides $x^{N}-1$ is $p^{m}-1$. Show that the minimal polynomial of a primitive element in F_{q} is a primitive polynomial.
2. [5 points] Prove that a binary primitive BCH code with parameters m and $t=2^{m-1}-$ 1 is a repetition code.
3. [5 points] Find generator polynomials for a BCH code with length 15 and $t=1,2,3$. Explain your procedure. Note that the generator polynomials may not be unique. Specify one generator polynomial for each value of t.
