EE 605: Error Correcting Codes
 Instructor: Saravanan Vijayakumaran
 Indian Institute of Technology Bombay

1. (5 points) Let C be a binary linear block code given by the vectors

$$
\begin{aligned}
& {[0,0,0,0,0,0,0],[1,0,0,0,0,0,1],[0,1,0,0,1,0,0],[1,1,0,0,1,0,1],} \\
& {[0,0,1,0,0,1,0],[1,0,1,0,0,1,1],[0,1,1,0,1,1,0],[1,1,1,0,1,1,1],} \\
& {[0,0,0,1,0,0,1],[1,0,0,1,0,0,0],[0,1,0,1,1,0,1],[1,1,0,1,1,0,0],} \\
& {[0,0,1,1,0,1,1],[1,0,1,1,0,1,0],[0,1,1,1,1,1,1],[1,1,1,1,1,1,0]}
\end{aligned}
$$

(a) What is the dimension of C^{\perp} ?
(b) What is the minimum distance of C^{\perp} ?
2. (5 points) The first row of a standard array is given below where the last four entries are missing. It is known that this standard array has 8 columns.

$$
0000001100011010101000111 * * * * *
$$

(a) Complete the standard array by giving all the remaining columns and rows.
(b) If the code corresponding to this standard array is used over a binary symmetric channel with crossover probability p, what is the probability of decoding error?
3. (5 points) Consider a binary linear code with generator matrix

$$
G=\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1
\end{array}\right]
$$

Suppose a codeword from this code is sent over a binary symmetric channel with crossover probability p. What is the probability that the received vector is a codeword?
4. (5 points) Let C_{1}, C_{2} be binary linear block codes of same length n and dimensions k_{1}, k_{2} respectively. Let d_{i} be the minimum distance of C_{i} for $i=1,2$. Consider the set of vectors

$$
C_{3}=\left\{\left.\left[\begin{array}{ll}
\mathbf{u} & \mathbf{v}
\end{array}\right] \right\rvert\, \mathbf{u} \in C_{1}, \mathbf{v} \in C_{2}\right\}
$$

(a) Show that C_{3} is a linear block code.
(b) What is the dimension of C_{3} ?
(c) What is the minimum distance of C_{3} ?

