- 1. (5 points) Let a binary cyclic code C have generator polynomial g(X). If C is used for error detection, prove the following.
 - (a) If X + 1 is a factor of g(X), all odd weight error patterns are detected.
 - (b) If an error pattern e(X) is detectable, then its *i*th cyclic shift $e^{(i)}(X)$ is also detectable.
- 2. (5 points) Find all subgroups of $\mathbb{Z}_{30} = \{0, 1, 2, \dots, 29\}$ which is a group under modulo 30 addition. For each subgroup, list its generators.
- 3. (5 points) Let F_q be a finite field with q elements.
 - (a) For any $\beta \in F_q^*$, consider the sequence $\beta, \beta^2, \beta^3, \beta^4, \ldots$. Show that the first element to repeat in this sequence is β , i.e. there exists a positive integer n such that $\beta^i \neq \beta^j$ for $1 \leq i < j \leq n-1$ and $\beta^n = \beta$.
 - (b) Using the above result, show that all the elements in F_q are roots of the polynomial $x^q x$.
- 4. (5 points) Let \mathbb{F}_3 be the finite field with three elements. Let $\mathbb{F}_3[x]$ be the set of polynomials with coefficients in \mathbb{F}_3 .
 - (a) Find the prime polynomials of degree 1 and degree 2 in $\mathbb{F}_3[x]$.
 - (b) Let g(x) be a degree 2 prime polynomial found in the previous part. Let $R_{\mathbb{F}_{3,2}}$ be the set of remainders when polynomials in $\mathbb{F}_3[x]$ are divided by g(x). $R_{\mathbb{F}_{3,2}}$ is a field under addition and multiplication modulo g(x). Find the multiplicative inverses of all the non-zero elements in $R_{\mathbb{F}_{3,2}}$.