# EE 605: Error Correcting Codes 

Instructor: Saravanan Vijayakumaran
Indian Institute of Technology Bombay

1. (5 points) Let a binary cyclic code $C$ have generator polynomial $g(X)$. If $C$ is used for error detection, prove the following.
(a) If $X+1$ is a factor of $g(X)$, all odd weight error patterns are detected.
(b) If an error pattern $e(X)$ is detectable, then its $i$ th cyclic shift $e^{(i)}(X)$ is also detectable.
2. (5 points) Find all subgroups of $\mathbb{Z}_{30}=\{0,1,2, \ldots, 29\}$ which is a group under modulo 30 addition. For each subgroup, list its generators.
3. (5 points) Let $F_{q}$ be a finite field with $q$ elements.
(a) For any $\beta \in F_{q}^{*}$, consider the sequence $\beta, \beta^{2}, \beta^{3}, \beta^{4}, \ldots$. Show that the first element to repeat in this sequence is $\beta$, i.e. there exists a positive integer $n$ such that $\beta^{i} \neq \beta^{j}$ for $1 \leq i<j \leq n-1$ and $\beta^{n}=\beta$.
(b) Using the above result, show that all the elements in $F_{q}$ are roots of the polynomial $x^{q}-x$.
4. (5 points) Let $\mathbb{F}_{3}$ be the finite field with three elements. Let $\mathbb{F}_{3}[x]$ be the set of polynomials with coefficients in $\mathbb{F}_{3}$.
(a) Find the prime polynomials of degree 1 and degree 2 in $\mathbb{F}_{3}[x]$.
(b) Let $g(x)$ be a degree 2 prime polynomial found in the previous part. Let $R_{\mathbb{F}_{3}, 2}$ be the set of remainders when polynomials in $\mathbb{F}_{3}[x]$ are divided by $g(x) . R_{\mathbb{F}_{3}, 2}$ is a field under addition and multiplication modulo $g(x)$. Find the multiplicative inverses of all the non-zero elements in $R_{\mathbb{F}_{3}, 2}$.
