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BCH Codes

• Discovered by Hocquenghem in 1959 and independently
by Bose and Chaudhari in 1960

• Cyclic structure proved by Peterson in 1960
• Decoding algorithms proposed/refined by Peterson,

Gorenstein and Zierler, Chien, Forney, Berlekamp,
Massey. . .

• We will discuss a subclass of BCH codes — binary
primitive BCH codes
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Binary Primitive BCH Codes
For positive integers m ≥ 3 and t < 2m−1, there exists an (n, k)
BCH code with parameters
• n = 2m − 1
• n − k ≤ mt
• dmin ≥ 2t + 1

Definition
Let α be a primitive element in F2m . The generator polynomial
g(x) of the t-error-correcting BCH code of length 2m − 1 is the
least degree polynomial in F2[x ] that has

α, α2, α3, . . . , α2t

as its roots.
Let ϕi(x) be the minimal polynomial of αi . Then g(x) is the
LCM of ϕ1(x), ϕ2(x), . . . , ϕ2t(x).
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Binary Primitive BCH Code of Length 7

• m = 3 and t < 23−1 = 4

• Let α be a primitive element of F8

• For t = 1, g(x) is the least degree polynomial in F2[x ] that has as its
roots α, α2

• α is a root of x8 + x

x8 + x = x(x + 1)(x3 + x + 1)(x3 + x2 + 1)

• Let α be a root of x3 + x + 1
• The other roots of x3 + x + 1 are α2, α4

• For t = 1, g(x) = x3 + x + 1

• For t = 2, g(x) is the least degree polynomial in F2[x ] that has as its
roots α, α2, α3, α4

• The roots of x3 + x2 + 1 are α3, α5, α6

• For t = 2, g(x) = (x3 + x + 1)(x3 + x2 + 1)

• For t = 3, g(x) is the least degree polynomial in F2[x ] that has as its
roots α, α2, α3, α4, α5, α6 =⇒ g(x) = (x3 + x + 1)(x3 + x2 + 1)
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Binary Primitive BCH Code of Length 7
For a BCH code with parameters m and t , we have
• n − k ≤ mt
• dmin ≥ 2t + 1

t g(x) n − k mt dmin 2t + 1
1 x3 + x + 1 3 3 3 3
2 (x3 + x + 1)(x3 + x2 + 1) 6 6 7 5
3 (x3 + x + 1)(x3 + x2 + 1) 6 9 7 7

Definition
A degree m irreducible polynomial in F2[x ] is said to be primitive
if the smallest value of N for which it divides xN + 1 is 2m − 1

Lemma
The minimal polynomial of a primitive element is a primitive
polynomial.
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Single Error Correcting BCH Codes are Hamming
Codes

We will prove this for m = 3. The proof of the general case is
similar.

Proof.

• Consider a BCH code with parameter m = 3 and t = 1
• Let α be a primitive element of F8 and a root of x3 + x + 1
• The generator polynomial g(x) = x3 + x + 1
• The code has length 7 and dimension 4
• A polynomial v(x) = v0 + v1x + v2x2 + · · ·+ v6x6 is a code

polynomial ⇐⇒ v(x) is a multiple of g(x) ⇐⇒ α is a root
of v(x) ⇐⇒ v(α) = 0

v(α) = 0 ⇐⇒ v0 + v1α+ v2α
2 + v3α

3 + · · ·+ v6α
6 = 0
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Single Error Correcting BCH Codes are Hamming
Codes

Proof continued.
Power Polynomial Tuple

0 0
(
0 0 0

)
1 1

(
1 0 0

)
α α

(
0 1 0

)
α2 α2 (

0 0 1
)

α3 1 + α
(
1 1 0

)
α4 α+ α2 (

0 1 1
)

α5 1 + α+ α2 (
1 1 1

)
α6 1 + α2 (

1 0 1
)

v(α) = 0 ⇐⇒ v0 + v1α+ v2α
2 + v3α

3 + · · ·+ v6α
6 = 0

⇐⇒
[
1 α · · · α6]


v0

v1
...

v6

 = 0 ⇐⇒

1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1




v0

v1
...

v6

 = 0
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Degree of Generator Polynomial

Theorem
For a binary primitive BCH code with parameters m, t and
generator polynomial g(x), deg [g(x)] ≤ mt.

Proof.

• g(x) = LCM {ϕ1(x), ϕ2(x), ϕ3(x), . . . , ϕ2t(x)}
• If i is an even integer, then i = i ′2a where i ′ is odd

• αi =
(
αi ′
)2a

=⇒ αi and αi ′ have the same minimal
polynomial

• Every even power of α has the same minimal polynomial
as some previous odd power of α

g(x) = LCM {ϕ1(x), ϕ3(x), ϕ5(x), . . . , ϕ2t−1(x)}

• Since deg (ϕi) divides m, we have n − k ≤ mt
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Lower Bound on Minimum Distance

• We want to show that if the generator polynomial has roots
α, α2, · · · , α2t then dmin ≥ 2t + 1

• Suppose there exists a nonzero codeword
v = (v0, v1, . . . , vn−1) of weight δ ≤ 2t

• The corresponding code polynomial satisfies v(αi) = 0 for
i = 1,2,3, . . . ,2t

v0 + v1α+ v2α
2 + · · ·+ vn−1α

n−1 = 0
v0 + v1α

2 + v2α
4 + · · ·+ vn−1α

2(n−1) = 0
...

v0 + v1α
2t + v2α

4t + · · ·+ vn−1α
2t(n−1) = 0

• Let j1, j2, . . . , jδ be the nonzero locations in the codeword

vj1(α
i)j1 + vj2(α

i)j2 + · · ·+ vjδ(α
i)jδ = 0

for i = 1,2, . . . ,2t
9 / 13



Lower Bound on Minimum Distance

[
vj1 vj2 · · · vjδ

]


αj1
(
α2)j1 · · ·

(
α2t)j1

αj2
(
α2)j2 · · ·

(
α2t)j2

αj3
(
α2)j3 · · ·

(
α2t)j3

...
...

...
αjδ

(
α2)jδ · · ·

(
α2t)jδ


= 0

=⇒
[
1 1 · · · 1

]


αj1
(
αj1
)2 · · ·

(
αj1
)2t

αj2
(
αj2
)2 · · ·

(
αj2
)2t

αj3
(
αj3
)2 · · ·

(
αj3
)2t

...
...

...
αjδ

(
αjδ
)2 · · ·

(
αjδ
)2t


= 0
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Lower Bound on Minimum Distance

=⇒
[
1 1 · · · 1

]


αj1
(
αj1
)2 · · ·

(
αj1
)δ

αj2
(
αj2
)2 · · ·

(
αj2
)δ

αj3
(
αj3
)2 · · ·

(
αj3
)δ

...
...

...
αjδ

(
αjδ
)2 · · ·

(
αjδ
)δ


= 0

=⇒

∣∣∣∣∣∣∣∣∣∣∣∣∣

αj1
(
αj1
)2 · · ·

(
αj1
)δ

αj2
(
αj2
)2 · · ·

(
αj2
)δ

αj3
(
αj3
)2 · · ·

(
αj3
)δ

...
...

...
αjδ

(
αjδ
)2 · · ·

(
αjδ
)δ

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0
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Lower Bound on Minimum Distance

=⇒ α(j1+···+jδ)

∣∣∣∣∣∣∣∣∣∣∣

1 αj1 · · · α(δ−1)j1

1 αj2 · · · α(δ−1)j2

1 αj3 · · · α(δ−1)j3

...
...

...
1 αjδ · · · α(δ−1)jδ

∣∣∣∣∣∣∣∣∣∣∣
= 0

• αj1+···+jδ 6= 0 since α is a nonzero field element
• The determinant is a Vandermonde determinant which is

not zero
• This contradicts our assumption that a nonzero codeword

of weight δ ≤ 2t exists
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Questions? Takeaways?
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