Cyclic Codes

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

August 26, 2014

Cyclic Codes

Definition

A cyclic shift of a vector $\left[\begin{array}{lllll}v_{0} & v_{1} & \cdots & v_{n-2} & v_{n-1}\end{array}\right]$ is the vector $\left[\begin{array}{llllll}v_{n-1} & v_{0} & v_{1} & \cdots & v_{n-3} & v_{n-2}\end{array}\right]$.

Definition

An (n, k) linear block code C is a cyclic code if every cyclic shift of a codeword in C is also a codeword.

Example

Consider the $(7,4)$ code C with generator matrix

$$
G=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 & 1
\end{array}\right]
$$

Polynomial Representation of Vectors

For every vector $\mathbf{v}=\left[\begin{array}{lllll}v_{0} & v_{1} & \cdots & v_{n-2} & v_{n-1}\end{array}\right]$ there is a polynomial

$$
\mathbf{v}(X)=v_{0}+v_{1} X+v_{2} X^{2}+\cdots+v_{n-1} X^{n-1}
$$

Let $\mathbf{v}^{(i)}$ be the vector resulting from i cyclic shifts on \mathbf{v}
$\mathbf{v}^{(i)}(X)=v_{n-i}+v_{n-i+1} X+\cdots+v_{n-1} X^{i-1}+v_{0} X^{i}+\cdots+v_{n-i-1} X^{n-1}$

Example
$\mathbf{v}=\left[\begin{array}{lllllll}1 & 0 & 0 & 1 & 1 & 0 & 1\end{array}\right], \mathbf{v}(X)=1+X^{3}+X^{4}+X^{6}$
$\mathbf{v}^{(1)}=\left[\begin{array}{lllllll}1 & 1 & 0 & 0 & 1 & 1 & 0\end{array}\right], \mathbf{v}^{(1)}(X)=1+X+X^{4}+X^{5}$
$\mathbf{v}^{(2)}=\left[\begin{array}{lllllll}0 & 1 & 1 & 0 & 0 & 1 & 1\end{array}\right], \mathbf{v}^{(2)}(X)=X+X^{2}+X^{5}+X^{6}$

Polynomial Representation of Vectors

- Consider $\mathbf{v}(X)$ and $\mathbf{v}^{(1)}(X)$

$$
\begin{aligned}
\mathbf{v}(X) & =v_{0}+v_{1} X+v_{2} X^{2}+\cdots+v_{n-1} X^{n-1} \\
\mathbf{v}^{(1)}(X) & =v_{n-1}+v_{0} X+v_{1} X^{2}+v_{2} X^{3}+\cdots+v_{n-2} X^{n-2} \\
& =v_{n-1}+X\left[v_{0}+v_{1} X+v_{2} X^{2}+\cdots+v_{n-2} X^{n-2}\right] \\
& =v_{n-1}\left(1+X^{n}\right)+X\left[v_{0}+\cdots+v_{n-2} X^{n-2}+v_{n-1} X^{n-1}\right] \\
& =v_{n-1}\left(1+X^{n}\right)+X \mathbf{v}(X)
\end{aligned}
$$

- In general, $\mathbf{v}(X)$ and $\mathbf{v}^{(i)}(X)$ are related by

$$
X^{i} \mathbf{v}(X)=\mathbf{v}^{(i)}(X)+\mathbf{q}(X)\left(X^{n}+1\right)
$$

where $\mathbf{q}(X)=v_{n-i}+v_{n-i+1} X+\cdots+v_{n-1} X^{i-1}$

- $\mathbf{v}^{(i)}(X)$ is the remainder when $X^{i} \mathbf{v}(X)$ is divided by $X^{n}+1$

Hamming Code of Length 7

Codeword	Code Polynomial
0000000	0
1000110	$1+X^{4}+X^{5}$
0100011	$X+X^{5}+X^{6}$
1100101	$1+X+X^{4}+X^{6}$
0010111	$X^{2}+X^{4}+X^{5}+X^{6}$
1010001	$1+X^{2}+X^{6}$
0110100	$X+X^{2}+X^{4}$
1110010	$1+X+X^{2}+X^{5}$
0001101	$X^{3}+X^{4}+X^{6}$
1001011	$1+X^{3}+X^{5}+X^{6}$
0101110	$X+X^{3}+X^{4}+X^{5}$
1101000	$1+X+X^{3}$
0011010	$X^{2}+X^{3}+X^{5}$
1011100	$1+X^{2}+X^{3}+X^{4}$
0111001	$X+X^{2}+X^{3}+X^{6}$
1111111	$1+X+X^{2}+X^{3}+X^{4}+X^{5}+X^{6}$

Properties of Cyclic Codes (1)

Theorem
The nonzero code polynomial of minimum degree in a linear block code is unique.

Proof.

Suppose there are two code polynomials $\mathbf{g}(X)$ and $\mathbf{g}^{\prime}(X)$ of minimum degree r.
What is the degree of their sum?

Properties of Cyclic Codes (2)

Let $\mathbf{g}(X)=g_{0}+g_{1} X+\cdots+g_{r-1} X^{r-1}+X^{r}$ be the nonzero code polynomial of minimum degree in an (n, k) binary cyclic code C.

Theorem
The constant term g_{0} is equal to 1 .
Proof.
Suppose $g_{0}=0$.
Then $g_{1} X+g_{2} X^{2}+\cdots+X^{r}$ is a code polynomial. What happens when we left shift the corresponding codeword?

Properties of Cyclic Codes (3)

Let $\mathbf{g}(X)=g_{0}+g_{1} X+\cdots+g_{r-1} X^{r-1}+X^{r}$ be the nonzero code polynomial of minimum degree in an (n, k) binary cyclic code C.
Theorem
A binary polynomial of degree $n-1$ or less is a code polynomial if and only if it is a multiple of $\mathbf{g}(X)$.

Proof.

(\Leftarrow) A multiple of $\mathbf{g}(X)$ of degree $n-1$ or less is a linear combination of shifts of $\mathbf{g}(X)$.
(\Rightarrow) Consider the remainder when a code polynomial is divided by $\mathbf{g}(X)$.
$\mathbf{g}(X)$ is called the generator polynomial of the cyclic code.

Properties of Cyclic Codes (4)

Theorem
The degree of the generator polynomial of an (n, k) binary cyclic code is $n-k$.

Proof.
If the degree of $\mathbf{g}(X)$ is r, how many distinct multiples of $\mathbf{g}(X)$ of degree of $n-1$ or less exist?

Properties of Cyclic Codes (5)

Theorem
The generator polynomial of an (n, k) binary cyclic code is a factor of $X^{n}+1$.

Proof.
$\mathbf{g}(X)$ has degree $n-k$.
What is the remainder when $X^{k} \mathbf{g}(X)$ is divided by $X^{n}+1$?

Properties of Cyclic Codes (6)

Theorem
If $\mathbf{g}(X)$ is a polynomial of degree $n-k$ and is a factor of $X^{n}+1$, then $\mathbf{g}(X)$ generates an (n, k) cyclic code.

Proof.

Multiples of $\mathbf{g}(X)$ of degree n - 1 or less generate a (n, k) linear block code.
We need to show that the generated code is cyclic.
For a code polynomial $\mathbf{v}(X)$ consider the following equation

$$
X \mathbf{v}(X)=v_{n-1}\left(X^{n}+1\right)+\mathbf{v}^{(1)}(X)
$$

What can we say about $\mathbf{v}^{(1)}(X)$?

Systematic Encoding of Cyclic Codes

- To encode a k-bit message $\left[\begin{array}{llll}u_{0} & u_{1} & \cdots & u_{k-1}\end{array}\right]$ construct the message polynomial

$$
\mathbf{u}(X)=u_{0}+u_{1} X+\cdots+u_{k-1} X^{k-1} .
$$

- Given a generator polynomial $\mathbf{g}(X)$ of an (n, k) cyclic code, the corresponding codeword is $\mathbf{u}(X) \mathbf{g}(X)$. This is not a systematic encoding.
- A systematic encoding of the message can be obtained as follows
- Divide $X^{n-k} \mathbf{u}(X)$ by $\mathbf{g}(X)$ to obtain remainder $\mathbf{b}(X)$
- The code polynomial is given by $\mathbf{b}(X)+X^{n-k} \mathbf{u}(X)$

Circuits for Cyclic Code Encoding

A Shift Register Circuit

Let $\mathbf{g}(X)=1+g_{1} X+g_{2} X^{2}+\cdots+g_{r-1} X^{r-1}+X^{r}$

$\mathbf{s}(X)=s_{0}+s_{1} X+\cdots+s_{r-1} X^{r-1}$ is the current state polynomial The next state polynomial $\mathbf{s}^{\prime}(X)$ is given by

$$
\mathbf{s}^{\prime}(X)=[a+X \mathbf{s}(X)] \bmod \mathbf{g}(X)
$$

Can we use this circuit to build an encoder for a cyclic code with generator polynomial $\mathbf{g}(X)$?

Circuit for Systematic Encoding

- If the initial state polynomial is zero and the input is a sequence of bits $a_{m-1}, a_{m-2}, \ldots, a_{1}, a_{0}$, the final state polynomial is

$$
\mathbf{a}(X) \bmod \mathbf{g}(X)=\left[\sum_{i=0}^{m-1} a_{i} X^{i}\right] \bmod \mathbf{g}(X)
$$

- For systematic encoding we need $X^{n-k} \mathbf{u}(X) \bmod \mathbf{g}(X)$ which corresponds to input bit sequence

$$
u_{k-1}, u_{k-2}, \ldots, u_{1}, u_{0}, \underbrace{0,0, \ldots, 0,0}_{n-k}
$$

- Is there a way to avoid the delay of $n-k$ clock ticks?

Another Shift Register Circuit

Let $\mathbf{g}(X)=1+g_{1} X+g_{2} X^{2}+\cdots+g_{r-1} X^{r-1}+X^{r}$

$\mathbf{s}(X)=s_{0}+s_{1} X+\cdots+s_{r-1} X^{r-1}$ is the current state polynomial The next state polynomial $\mathbf{s}^{\prime}(X)$ is given by

$$
\mathbf{s}^{\prime}(X)=\left[a X^{r}+X \mathbf{s}(X)\right] \bmod \mathbf{g}(X)
$$

If the initial state polynomial is zero and the input is a sequence of bits $a_{m-1}, a_{m-2}, \ldots, a_{1}, a_{0}$, the final state polynomial is

$$
X^{r} \mathbf{a}(X) \bmod \mathbf{g}(X)=\left[\sum_{i=0}^{m-1} a_{i} X^{r+i}\right] \bmod \mathbf{g}(X)
$$

Systematic Encoding Circuit for Cyclic Codes

Let $\mathbf{g}(X)=1+g_{1} X+g_{2} X^{2}+\cdots+g_{n-k-1} X^{n-k-1}+X^{n-k}$

- Turn on the gate. Shift the message bits $u_{k-1}, u_{k-2}, \ldots, u_{0}$ into the circuit and channel simultaneously. Only Output1 is fed to the channel.
- Turn off the gate and shift the contents of the shift register into the channel. Only Output2 is fed to the channel.

Error Detection using Cyclic Codes

Syndrome Computation

- Errors are detected when the received vector is not a codeword
- For linear block codes, \mathbf{r} is a codeword $\Longleftrightarrow \mathbf{r H}^{T}=\mathbf{0}$
- $\mathbf{s}=\mathbf{r H}^{T}$ is called the syndrome vector
- For cyclic codes, the received polynomial $\mathbf{r}(X)$ is a code polynomial $\Longleftrightarrow \mathbf{r}(X) \bmod \mathbf{g}(X)=0$
- $\mathbf{s}(X)=\mathbf{r}(X) \bmod \mathbf{g}(X)$ is called the syndrome polynomial
- The following circuit computes the syndrome polynomial

Detecting Odd Weight Error Patterns

- For received polynomial $\mathbf{r}(X)=\mathbf{v}(X)+\mathbf{e}(X)$ where $\mathbf{v}(X)$ is a code polynomial

$$
\mathbf{r}(X) \bmod \mathbf{g}(X)=\mathbf{e}(X) \bmod \mathbf{g}(X)
$$

- Error $\mathbf{e}(X) \neq 0$ is undetected if $\mathbf{e}(X) \bmod \mathbf{g}(X)=0$
- If an odd weight error pattern occurs, then

$$
\mathbf{e}(X)=X^{i_{1}}+X^{i_{2}}+\cdots+X^{i_{m}}
$$

where m is odd and $0 \leq i_{j} \leq n-1$

- If $X+1$ is a factor of $\mathbf{g}(X)$, all odd weight error patterns are detected
- If $\mathbf{g}(X)=(X+1) \mathbf{a}(X)$, then $\mathbf{e}(X) \bmod \mathbf{g}(X)=0 \Longrightarrow$ $\mathbf{e}(X)=\mathbf{g}(X) \mathbf{b}(X)=(X+1) \mathbf{a}(X) \mathbf{b}(X)$

Detecting Double Bit Errors

- A double bit error pattern is of the form $\mathbf{e}(X)=X^{i}+X^{j}$ where $i \neq j$ and $0 \leq i, j \leq n-1$
- A polynomial over \mathbb{F}_{2} is said to be irreducible over \mathbb{F}_{2} if it has no factors other than 1 and itself
- Examples: $X, X+1, X^{2}+X+1, X^{3}+X+1, X^{3}+X^{2}+1$
- A degree m irreducible polynomial is primitive if the smallest value of N for which it divides $X^{N}+1$ is $2^{m}-1$
- Examples: $X+1, X^{2}+X+1$
- If $\mathbf{g}(X)$ is a primitive polynomial of degree m and the code length $n=2^{m}-1$, then all double bit errors are detected

$$
X^{i}+X^{j}=X^{i}\left(1+X^{j-i}\right)
$$

- In practice, $\mathbf{g}(X)$ is chosen to be $(X+1) \mathbf{p}(X)$ where $\mathbf{p}(X)$ is a primitive polynomial

Example: CRC-16

- The generator polynomial of CRC-16 is given by

$$
\mathbf{g}(X)=X^{16}+X^{15}+X^{2}+1=(X+1)\left(X^{15}+X+1\right)
$$

CRC = Cyclic Redundancy Check

- All odd weight error patterns are detected
- If the code length is $2^{15}-1=32767$, then all double bit errors are detected
- A burst error of length m occurs if the error locations are confined to a block of length m
$e(X)=X^{i}+e_{i+1} X^{i+1}+e_{i+2} X^{i+2}+\cdots+e_{i+m-2} X^{i+m-2}+X^{i+m-1}$
- The CRC-16 code can detect all burst errors of length 16 or less, 99.997% of 17 -length bursts, 99.998% of 18 -length bursts...

Burst Error Detection

- An (n, k) cyclic code can detect burst errors of length $n-k$ or less, including end-around bursts
- The fraction of undetectable bursts of length $n-k+1$ is $2^{-(n-k-1)}$
- For $m>n-k+1$, the fraction of undetectable bursts of length m is $2^{-(n-k)}$

CRC in Context

CRC is used along with Automatic Repeat reQuest (ARQ) to enable reliable communication

Questions? Takeaways?

