Examples of Linear Block Codes

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

August 18, 2014

Hamming Code

Hamming Code

- For any integer $m \geq 3$, the code with parity check matrix consisting of all nonzero columns of length m is a Hamming code
- For $m=3$

$$
\mathbf{H}=\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right]
$$

- For $m=4$

$$
\mathbf{H}=\left[\begin{array}{lllllllllllllll}
1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

- Length of the code $n=2^{m}-1$
- Dimension of the code $k=2^{m}-m-1$
- Minimum distance of the code $d_{\text {min }}=3$

Hamming's Approach

- Observes that a single parity check can detect a single error
- In a block of n bits, m locations are information bits and the remaining $n-m$ bits are check bits
- The check bits enforce even parity on subsets of the information bits
- In the received block of n bits the check bits are recalculated
- If the observed and recalculated values agree write a 0. Otherwise write a 1
- The sequence of $n-m$ 1's and 0's is called the checking number and gives the location of the single error
- To be able to locate all single bit error locations

$$
2^{n-m} \geq n+1 \Longrightarrow 2^{m} \leq \frac{2^{n}}{n+1}
$$

Hamming's Approach

- The LSB of the checking number should enforce even parity on locations $1,3,5,7,9, \ldots$
- The next significant bit should enforce even parity on locations 2, 3, 6, 7, 10, ...
- The third significant bit should enforce even parity on locations 4, 5, 6, 7, 12, ...
- For $n=7$, the bound on m is

$$
2^{m} \leq \frac{2^{7}}{7+1}=2^{4}
$$

- Choose 1,2,4 as parity check locations and 3,5,6, 7 as information bit locations

Exercises

Let H be a parity check matrix for a Hamming code.

- What happens if we add a row of all ones to \mathbf{H} ?

$$
\mathbf{H}^{\prime}=\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right]
$$

- What happens if we delete all columns of even weight from H?

$$
\mathbf{H}^{\prime \prime}=\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

Reed-Muller Code

Reed-Muller Code

- Let $f\left(X_{1}, X_{2}, \ldots, X_{m}\right)$ be a Boolean function of m variables
- For the 2^{m} inputs the values of f form a vector $\mathbf{v}(f) \in \mathbb{F}_{2}^{2^{m}}$
- Example: $m=3$ and $f\left(X_{1}, X_{2}, X_{3}\right)=X_{1} X_{2}+X_{3}$

$$
\mathbf{v}(f)=\left[\begin{array}{llllllll}
0 & 1 & 0 & 1 & 0 & 1 & 1 & 0
\end{array}\right]
$$

- Let $P(r, m)$ be the set of all Boolean functions of m variables having degree r or less
- The r th order binary Reed-Muller code $\mathrm{RM}(r, m)$ is given by the vectors

$$
\{\mathbf{v}(f) \mid f \in P(r, m)\}
$$

- Is $\mathrm{RM}(r, m)$ linear?
- Length of the code $n=2^{m}$
- Dimension of the code $k=1+\binom{m}{1}+\cdots+\binom{m}{r}$

Basis for $\operatorname{RM}(2,4)$

$$
\operatorname{RM}(2,4)=\{\mathbf{v}(f) \mid f \in P(2,4)\}
$$

$$
P(2,4)=\left\langle 1, X_{1}, X_{2}, X_{3}, X_{4}, X_{1} X_{2}, X_{1} X_{3}, X_{1} X_{4}, X_{2} X_{3}, X_{2} X_{4}, X_{3} X_{4}\right\rangle
$$

$$
G=\left[\begin{array}{llllllllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Minimum Distance of $\mathrm{RM}(r, m)$

- $\operatorname{RM}(r, m)=\{\mathbf{v}(f) \mid f \in P(r, m)\}$
- $X_{1} X_{2} \cdots X_{r} \in P(r, m) \Longrightarrow d_{\text {min }} \leq 2^{m-r}$
- Let $f\left(X_{1}, \ldots, X_{m}\right)$ be a non-zero polynomial of degree at most r

$$
f\left(X_{1}, \ldots, X_{m}\right)=X_{1} X_{2} \cdots X_{s}+g\left(X_{1}, \ldots, X_{m}\right)
$$

where $X_{1} X_{2} \cdots X_{s}$ is a maximum degree term in f and $s \leq r$

- For any assignment of values to variables X_{s+1}, \ldots, X_{m} in f the result is a non-zero polynomial
- For every assignment of values to X_{s+1}, \ldots, X_{m}, there is an assignment of values to X_{1}, \ldots, X_{s} where f is non-zero $\Longrightarrow d_{\text {min }} \geq 2^{m-s} \geq 2^{m-r}$

$$
d_{\text {min }}=2^{m-r}
$$

Example

$f_{1}\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=X_{1} X_{2}, \quad f_{2}\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=X_{1} X_{2}+X_{2} X_{3}+X_{3} X_{4}+X_{1}+X_{3}$

X_{1}	X_{2}	X_{3}	X_{4}	$f_{1}\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$	$f_{2}\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$
0	0	0	0	0	0
0	1	0	0	0	0
1	0	0	0	0	1
1	1	0	0	1	0
0	0	0	1	0	0
0	1	0	1	0	0
1	0	0	1	0	1
1	1	0	1	1	0
0	0	1	0	0	1
0	1	1	0	0	0
1	0	1	0	0	0
1	1	1	0	1	0
0	0	1	1	0	0
0	1	1	1	0	1
1	0	1	1	0	1
1	1	1	1	1	1

Decoding the $\mathrm{RM}(2,4)$ Code

$G=\left[\begin{array}{l}\mathbf{g}_{0} \\ \mathbf{g}_{1} \\ \mathbf{g}_{2} \\ \mathbf{g}_{3} \\ \mathbf{g}_{4} \\ \mathbf{g}_{5} \\ \mathbf{g}_{6} \\ \mathbf{g}_{7} \\ \mathbf{g}_{8} \\ \mathbf{g}_{9} \\ \mathbf{g}_{10}\end{array}\right]=\left[\begin{array}{llllllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1\end{array}\right]$

A codeword \mathbf{v} can be expressed as a linear combination of rows of G

$$
\mathbf{v}=\left[\begin{array}{lllll}
v_{0} & v_{1} & \cdots & v_{14} & v_{15}
\end{array}\right]=\sum_{i=0}^{10} u_{i} \mathbf{g}_{i}
$$

where u_{i} 's represent message bits

Decoding u_{10}

$$
\begin{aligned}
& u_{10}=v_{0}+v_{1}+v_{2}+v_{3} \\
& u_{10}=v_{4}+v_{5}+v_{6}+v_{7} \\
& u_{10}=v_{8}+v_{9}+v_{10}+v_{11} \\
& u_{10}=v_{12}+v_{13}+v_{14}+v_{15}
\end{aligned}
$$

Let $\mathbf{r}=\mathbf{v}+\mathbf{e}$ be the received vector.
If $w t(\mathbf{e})=1$, then the following sums have majority equal to u_{10}

$$
\begin{aligned}
& A_{1}=r_{0}+r_{1}+r_{2}+r_{3} \\
& A_{2}=r_{4}+r_{5}+r_{6}+r_{7} \\
& A_{3}=r_{8}+r_{9}+r_{10}+r_{11} \\
& A_{4}=r_{12}+r_{13}+r_{14}+r_{15}
\end{aligned}
$$

Decoding u_{9}

$$
\begin{aligned}
& u_{9}=v_{0}+v_{1}+v_{4}+v_{5} \\
& u_{9}=v_{2}+v_{3}+v_{6}+v_{7} \\
& u_{9}=v_{8}+v_{9}+v_{12}+v_{13} \\
& u_{9}=v_{10}+v_{11}+v_{14}+v_{15}
\end{aligned}
$$

If $w t(\mathbf{e})=1$, then the following sums have majority equal to u_{9}

$$
\begin{aligned}
& A_{1}=r_{0}+r_{1}+r_{4}+r_{5} \\
& A_{2}=r_{2}+r_{3}+r_{6}+r_{7} \\
& A_{3}=r_{8}+r_{9}+r_{12}+r_{13} \\
& A_{4}=r_{10}+r_{11}+r_{14}+r_{15}
\end{aligned}
$$

Decoding u_{4}

After decoding $u_{10}, u_{9}, u_{8}, u_{7}, u_{6}, u_{5}$ remove the corresponding basis vectors from \mathbf{r}

$$
\mathbf{r}^{(1)}=\mathbf{r}+\sum_{i=5}^{10} u_{i} \mathbf{g}_{i}=\sum_{i=0}^{4} u_{i} \mathbf{g}_{i}+\mathbf{e}
$$

If $\operatorname{wt}(\mathbf{e})=1$, then the following sums have majority equal to u_{4}

$$
\begin{array}{ll}
A_{1}=r_{0}^{(1)}+r_{1}^{(1)}, & A_{5}=r_{8}^{(1)}+r_{9}^{(1)} \\
A_{2}=r_{2}^{(1)}+r_{3}^{(1)}, & A_{6}=r_{10}^{(1)}+r_{11}^{(1)} \\
A_{3}=r_{4}^{(1)}+r_{5}^{(1)}, & A_{7}=r_{12}^{(1)}+r_{13}^{(1)} \\
A_{4}=r_{6}^{(1)}+r_{7}^{(1)}, & A_{8}=r_{14}^{(1)}+r_{15}^{(1)}
\end{array}
$$

u_{1}, u_{2}, u_{3} can also be decoded using eight sums

Decoding u_{0}

After decoding u_{1}, \ldots, u_{10} remove the corresponding basis vectors from \mathbf{r}

$$
\mathbf{r}^{(2)}=\mathbf{r}+\sum_{i=1}^{10} u_{i} \mathbf{g}_{i}=u_{0} \mathbf{g}_{0}+\mathbf{e}
$$

There are 16 noisy versions of u_{0} whose majority is u_{0} if $w t(e)=1$.
This technique is called majority-logic decoding.

Questions? Takeaways?

