Examples of Linear Block Codes

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

August 18, 2014

Hamming Code

Hamming Code

- For any integer $m \ge 3$, the code with parity check matrix consisting of all nonzero columns of length m is a Hamming code
- For m = 3

$$\mathbf{H} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}$$

• For m = 4

- Length of the code $n = 2^m 1$
- Dimension of the code $k = 2^m m 1$
- Minimum distance of the code $d_{min} = 3$

Hamming's Approach

- Observes that a single parity check can detect a single error
- In a block of n bits, m locations are information bits and the remaining n - m bits are check bits
- The check bits enforce even parity on subsets of the information bits
- In the received block of n bits the check bits are recalculated
- If the observed and recalculated values agree write a 0.
 Otherwise write a 1
- The sequence of n − m 1's and 0's is called the checking number and gives the location of the single error
- To be able to locate all single bit error locations

$$2^{n-m} \ge n+1 \implies 2^m \le \frac{2^n}{n+1}$$

Hamming's Approach

- The LSB of the checking number should enforce even parity on locations 1, 3, 5, 7, 9, ...
- The next significant bit should enforce even parity on locations 2, 3, 6, 7, 10, . . .
- The third significant bit should enforce even parity on locations 4, 5, 6, 7, 12, . . .
- For n = 7, the bound on m is

$$2^m \le \frac{2^7}{7+1} = 2^4$$

 Choose 1, 2, 4 as parity check locations and 3, 5, 6, 7 as information bit locations

Exercises

Let **H** be a parity check matrix for a Hamming code.

What happens if we add a row of all ones to H?

 What happens if we delete all columns of even weight from H?

$$\mathbf{H}'' = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

Reed-Muller Code

Reed-Muller Code

- Let $f(X_1, X_2, ..., X_m)$ be a Boolean function of m variables
- For the 2^m inputs the values of f form a vector $\mathbf{v}(f) \in \mathbb{F}_2^{2^m}$
- Example: m = 3 and $f(X_1, X_2, X_3) = X_1X_2 + X_3$

$$\mathbf{v}(t) = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \end{bmatrix}$$

- Let P(r, m) be the set of all Boolean functions of m variables having degree r or less
- The rth order binary Reed-Muller code RM(r, m) is given by the vectors

$$\left\{\mathbf{v}(t)\middle| t\in P(r,m)\right\}$$

- Is RM(r, m) linear?
- Length of the code $n = 2^m$
- Dimension of the code $k = 1 + {m \choose 1} + \cdots + {m \choose r}$

Basis for RM(2, 4)

$$\mathsf{RM}(2,4) = \left\{ \mathbf{v}(f) \middle| f \in P(2,4) \right\}$$

$$P(2,4) = \langle 1, X_1, X_2, X_3, X_4, X_1X_2, X_1X_3, X_1X_4, X_2X_3, X_2X_4, X_3X_4 \rangle$$

Minimum Distance of RM(r, m)

- $\mathsf{RM}(r,m) = \left\{ \mathbf{v}(f) \middle| f \in P(r,m) \right\}$
- $X_1 X_2 \cdots X_r \in P(r, m) \implies d_{min} \leq 2^{m-r}$
- Let f(X₁,..., X_m) be a non-zero polynomial of degree at most r

$$f(X_1,\ldots,X_m)=X_1X_2\cdots X_s+g(X_1,\ldots,X_m)$$

where $X_1 X_2 \cdots X_s$ is a maximum degree term in f and $s \leq r$

- For any assignment of values to variables X_{s+1}, \ldots, X_m in f the result is a non-zero polynomial
- For every assignment of values to X_{s+1}, \ldots, X_m , there is an assignment of values to X_1, \ldots, X_s where f is non-zero $\implies d_{min} > 2^{m-s} > 2^{m-r}$

$$d_{min} = 2^{m-r}$$

Example

$$f_1(X_1, X_2, X_3, X_4) = X_1X_2, \ f_2(X_1, X_2, X_3, X_4) = X_1X_2 + X_2X_3 + X_3X_4 + X_1 + X_3$$

<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	$f_1(X_1, X_2, X_3, X_4)$	$f_2(X_1, X_2, X_3, X_4)$
0	0	0	0	0	0
0	1	0	0	0	0
1	0	0	0	0	1
1	1	0	0	1	0
0	0	0	1	0	0
0	1	0	1	0	0
1	0	0	1	0	1
1	1	0	1	1	0
0	0	1	0	0	1
0	1	1	0	0	0
1	0	1	0	0	0
1	1	1	0	1	0
0	0	1	1	0	0
0	1	1	1	0	1
1	0	1	1	0	1
1	1	1	1	1	1

Decoding the RM(2,4) Code

A codeword \mathbf{v} can be expressed as a linear combination of rows of G

$$\mathbf{v} = \begin{bmatrix} v_0 & v_1 & \cdots & v_{14} & v_{15} \end{bmatrix} = \sum_{i=0}^{10} u_i \mathbf{g}_i$$

where u_i 's represent message bits

Decoding u_{10}

$$u_{10} = v_0 + v_1 + v_2 + v_3$$

$$u_{10} = v_4 + v_5 + v_6 + v_7$$

$$u_{10} = v_8 + v_9 + v_{10} + v_{11}$$

$$u_{10} = v_{12} + v_{13} + v_{14} + v_{15}$$

Let $\mathbf{r} = \mathbf{v} + \mathbf{e}$ be the received vector.

If $wt(\mathbf{e}) = 1$, then the following sums have majority equal to u_{10}

$$A_1 = r_0 + r_1 + r_2 + r_3$$

$$A_2 = r_4 + r_5 + r_6 + r_7$$

$$A_3 = r_8 + r_9 + r_{10} + r_{11}$$

$$A_4 = r_{12} + r_{13} + r_{14} + r_{15}$$

Decoding u₉

$$u_9 = v_0 + v_1 + v_4 + v_5$$

 $u_9 = v_2 + v_3 + v_6 + v_7$
 $u_9 = v_8 + v_9 + v_{12} + v_{13}$
 $u_9 = v_{10} + v_{11} + v_{14} + v_{15}$

If $wt(\mathbf{e}) = 1$, then the following sums have majority equal to u_9

$$A_1 = r_0 + r_1 + r_4 + r_5$$

$$A_2 = r_2 + r_3 + r_6 + r_7$$

$$A_3 = r_8 + r_9 + r_{12} + r_{13}$$

$$A_4 = r_{10} + r_{11} + r_{14} + r_{15}$$

Decoding u₄

After decoding u_{10} , u_{9} , u_{8} , u_{7} , u_{6} , u_{5} remove the corresponding basis vectors from \mathbf{r}

$$\mathbf{r}^{(1)} = \mathbf{r} + \sum_{i=5}^{10} u_i \mathbf{g}_i = \sum_{i=0}^4 u_i \mathbf{g}_i + \mathbf{e}$$

If $wt(\mathbf{e}) = 1$, then the following sums have majority equal to u_4

$$A_{1} = r_{0}^{(1)} + r_{1}^{(1)}, \quad A_{5} = r_{8}^{(1)} + r_{9}^{(1)}$$

$$A_{2} = r_{2}^{(1)} + r_{3}^{(1)}, \quad A_{6} = r_{10}^{(1)} + r_{11}^{(1)}$$

$$A_{3} = r_{4}^{(1)} + r_{5}^{(1)}, \quad A_{7} = r_{12}^{(1)} + r_{13}^{(1)}$$

$$A_{4} = r_{6}^{(1)} + r_{7}^{(1)}, \quad A_{8} = r_{14}^{(1)} + r_{15}^{(1)}$$

 u_1, u_2, u_3 can also be decoded using eight sums

Decoding u₀

After decoding u_1, \ldots, u_{10} remove the corresponding basis vectors from \mathbf{r}

$$\mathbf{r}^{(2)} = \mathbf{r} + \sum_{i=1}^{10} u_i \mathbf{g}_i = u_0 \mathbf{g}_0 + \mathbf{e}$$

There are 16 noisy versions of u_0 whose majority is u_0 if $wt(\mathbf{e}) = 1$.

This technique is called majority-logic decoding.

Questions? Takeaways?