Finite Groups

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

September 22, 2014

Groups

Definition

A set G with a binary operation \star defined on it is called a group if

- the operation \star is associative,
- there exists an identity element *e* ∈ *G* such that for any *a* ∈ *G*

$$a \star e = e \star a = a$$
,

• for every $a \in G$, there exists an element $b \in G$ such that

$$a \star b = b \star a = e.$$

Example

• Modulo *n* addition on $\mathbb{Z}_n = \{0, 1, 2, ..., n-1\}$

Cyclic Groups

Definition

A finite group is a group with a finite number of elements. The order of a finite group G is its cardinality.

Definition

A cyclic group is a finite group G such that each element in G appears in the sequence

$$\{g,g\star g,g\star g\star g\star g,\ldots\}$$

for some particular element $g \in G$, which is called a generator of G.

Example

 $\mathbb{Z}_6 = \{0,1,2,3,4,5\}$ is a cyclic group with a generator 1

Group Isomorphism

Example

- $\mathbb{Z}_2=\{0,1\}$ is a group under modulo 2 addition
- $R = \{1, -1\}$ is a group under multiplication \mathbb{Z}_2 R $0 \oplus 0 = 0$ $1 \times 1 = 1$ $1 \oplus 0 = 1$ $-1 \times 1 = -1$
 - $0\oplus 1=1 \qquad 1\times -1=-1$
 - $1\oplus 1=0 \qquad -1\times -1= \ 1$

Definition

Groups *G* and *H* are isomorphic if there exists a bijection $\phi : G \rightarrow H$ such that

$$\phi(\alpha\star\beta)=\phi(\alpha)\otimes\phi(\beta)$$

for all $\alpha, \beta \in G$.

Cyclic Groups and \mathbb{Z}_n

Theorem

Every cyclic group G of order n is isomorphic to \mathbb{Z}_n

Proof.

Let *h* be a generator of *G*. Define $h^i = \underbrace{h \star h \star \cdots \star h}_{i \to j}$.

The function $\phi : G \to \mathbb{Z}_n$ defined by $\phi(h^i) = i \mod n$ is a bijection.

Corollary

Every finite cyclic group is abelian.

Subgroups

Definition

A nonempty subset S of a group G is called a subgroup of G if

- $\alpha + \beta \in S$ for all $\alpha, \beta \in S$
- $-\alpha \in S$ for all $\alpha \in S$

Example

 $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$ has subgroups

- {0}
- {0,3}
- $\{0, 2, 4\}$
- $\{0, 1, 2, 3, 4, 5\}$

Lagrange's Theorem

Theorem

If S is a subgroup of a finite group G, then |S| divides |G|.

Definition

Let *S* be a subgroup of a group *G*. For any $g \in G$, the set $S \oplus g = \{s \oplus g | s \in S\}$ is called a coset of *S*.

Example

$$\begin{array}{l} \mathcal{S} = \{0,3\} \text{ is a subgroup of } \mathbb{Z}_6 = \{0,1,2,3,4,5\}. \text{ It has cosets} \\ \mathcal{S} \oplus 0 = \{0,3\}\,, \quad \mathcal{S} \oplus 1 = \{1,4\}\,, \quad \mathcal{S} \oplus 2 = \{2,5\}\,, \\ \mathcal{S} \oplus 3 = \{0,3\}\,, \quad \mathcal{S} \oplus 4 = \{1,4\}\,, \quad \mathcal{S} \oplus 5 = \{2,5\}\,. \end{array}$$

Lemma

Two cosets of a subgroup are either equal or disjoint.

Lemma

If S is finite, then all its cosets have the same cardinality.

Application of Lagrange's Theorem

Prove that $2^{p-1} = 1 \mod p$ for any prime p > 2.

- Consider the group $\mathbb{Z}_p^* = \{1,2,3,\ldots,p-1\}$ under the operation

 $a \odot b = ab \mod p$

• Consider the subgroup S generated by 2

$$\left\{2,2^2,2^3,\ldots,2^{n-1},2^n=1\right\}$$

• What can we say about the order of S?

Subgroups of Cyclic Groups

Example

 $\mathbb{Z}_6=\{0,1,2,3,4,5\}$ has subgroups $\{0\},\,\{0,3\},\,\{0,2,4\},\,\{0,1,2,3,4,5\}$

Theorem

Every subgroup of a cyclic group is cyclic.

Proof.

• If *h* is a generator of a cyclic group *G* of order *n*, then

$$G = \left\{h, h^2, h^3, \dots, h^n = 1\right\}$$

- Every element in a subgroup *S* of *G* is of the form h^i where $1 \le i \le n$
- Let h^m be the smallest power of h in S
- Every element in *S* is a power of *h^m*

Subgroups of Cyclic Groups

Example

 $\mathbb{Z}_6=\{0,1,2,3,4,5\}$ has subgroups $\{0\},\,\{0,3\},\,\{0,2,4\},\,\{0,1,2,3,4,5\}$

Theorem

If G is a finite cyclic group with |G| = n, then G has a unique subgroup of order d for every divisor d of n.

Proof.

- If $G = \langle h \rangle$ and *d* divides *n*, then $\langle h^{n/d} \rangle$ has order *d*
- Every subgroup of G is of the form $\langle h^k \rangle$ where k divides n
- If k divides n, $\langle h^k \rangle$ has order $\frac{n}{k}$
- If a subgroup has order *d*, it is equal to $\langle h^{n/d} \rangle$

Number of Generators of a Cyclic Group

Examples

- $\mathbb{Z}_5 = \{0,1,2,3,4\}$ has four generators 1,2,3,4
- $\mathbb{Z}_6=\{0,1,2,3,4,5\}$ has two generators 1,5
- $\mathbb{Z}_{10} = \{0,1,2,\ldots,9\}$ has four generators 1,3,7,9

Theorem A cyclic group of order n has $\phi(n)$ generators where

 $\phi(n) = No.$ of integers in $\{0, 1, \dots, n-1\}$ relatively prime to n

Order of an Element in a Cyclic Group

Example

- $\mathbb{Z}_{10} = \{0, 1, 2, \dots, 9\}$ has
 - four elements 1, 3, 7, 9 of order 10
 - four elements 2, 4, 6, 8 of order 5
 - one element 5 of order 2
 - one element 0 of order 1

Theorem

$$n = \sum_{d:d|n} \phi(d)$$

Summary

- Every cyclic group G of order n is isomorphic to \mathbb{Z}_n .
- If S is a subgroup of a finite group G, then |S| divides |G|.
- Every subgroup of a cyclic group is cyclic.
- If *G* is a finite cyclic group with |G| = n, then *G* has a unique subgroup of order *d* for every divisor *d* of *n*.
- A cyclic group of order *n* has $\phi(n)$ generators.

Questions? Takeaways?