# Linear Block Codes 

# Saravanan Vijayakumaran sarva@ee.iitb.ac.in 

Department of Electrical Engineering Indian Institute of Technology Bombay

July 28, 2014

## Binary Block Codes

## Binary Block Code

Let $\mathbb{F}_{2}$ be the set $\{0,1\}$.
Definition
An $(n, k)$ binary block code is a subset of $\mathbb{F}_{2}^{n}$ containing $2^{k}$ elements

## Example

$n=3, k=1, C=\{000,111\}$

## Example

$n \geq 2, C=$ Set of vectors of even Hamming weight in $\mathbb{F}_{2}^{n}$,
$k=n-1$
$n=3, k=2, C=\{000,011,101,110\}$
This code is called the single parity check code

## Encoding Binary Block Codes

The encoder maps $k$-bit information blocks to codewords.
Definition
An encoder for an $(n, k)$ binary block code $C$ is an injective function from $\mathbb{F}_{2}^{k}$ to $C$

Example (3-Repetition Code)
$0 \rightarrow 000,1 \rightarrow 111$
or
$1 \rightarrow 000,0 \rightarrow 111$

## Decoding Binary Block Codes

The decoder maps $n$-bit received blocks to codewords
Definition
A decoder for an $(n, k)$ binary block code is a function from $\mathbb{F}_{2}^{n}$ to $C$

Example (3-Repetition Code)
$n=3, C=\{000,111\}$

$$
\begin{array}{ll}
000 \rightarrow 000 & 111 \rightarrow 111 \\
001 \rightarrow 000 & 110 \rightarrow 111 \\
010 \rightarrow 000 & 101 \rightarrow 111 \\
100 \rightarrow 000 & 011 \rightarrow 111
\end{array}
$$

Since encoding is injective, information bits can be recovered as $000 \rightarrow 0,111 \rightarrow 1$

## Optimal Decoder for Binary Block Codes

- Optimality criterion: Maximum probability of correct decision
- Let $\mathbf{x} \in C$ be the transmitted codeword
- Let $\mathbf{y} \in \mathbb{F}_{2}^{n}$ be the received vector
- Maximum a posteriori (MAP) decoder is optimal

$$
\hat{\mathbf{x}}_{M A P}=\operatorname{argmax}_{\mathbf{x} \in C} \operatorname{Pr}(\mathbf{x} \mid \mathbf{y})
$$

- If all codewords are equally likely to be transmitted, then maximum likelihood (ML) decoder is optimal

$$
\hat{\mathbf{x}}_{M L}=\operatorname{argmax}_{\mathbf{x} \in C} \operatorname{Pr}(\mathbf{y} \mid \mathbf{x})
$$

- Over a BSC with $p<\frac{1}{2}$, the minimum distance decoder is optimal if the codewords are equally likely

$$
\hat{\mathbf{x}}=\operatorname{argmin}_{\mathbf{x} \in C} d(\mathbf{x}, \mathbf{y})
$$

## Error Correction Capability of Binary Block Codes

## Definition

The minimum distance of a block code $C$ is defined as

$$
d_{\text {min }}=\min _{\mathbf{x}, \mathbf{y} \in C, \mathbf{x} \neq \mathbf{y}} d(\mathbf{x}, \mathbf{y})
$$

Example (3-Repetition Code)
$C=\{000,111\}, d_{\text {min }}=3$
Example (Single Parity Check Code)
$C=$ Set of vectors of even weight in $\mathbb{F}_{2}^{n}, d_{\text {min }}=2$
Theorem
For a binary block code with minimum distance $d_{\text {min }}$, the minimum distance decoder can correct upto $\left\lfloor\frac{d_{\text {min }}-1}{2}\right\rfloor$ errors.

## Complexity of Encoding and Decoding

Encoder

Decoder

- Map from $\mathbb{F}_{2}^{k}$ to $C$
- Worst case storage requirement $=O\left(n 2^{k}\right)$
- Map from $\mathbb{F}_{2}^{n}$ to $C$
- $\hat{\mathbf{x}}_{M L}=\operatorname{argmax}_{\mathbf{x} \in C} \operatorname{Pr}(\mathbf{y} \mid \mathbf{x})$
- Worst case storage requirement $=O\left(n 2^{k}\right)$
- Time complexity $=O\left(n 2^{k}\right)$

Need more structure to reduce complexity

## Binary Linear Block Codes

## Vector Spaces over $\mathbb{F}_{2}$

- Define the following operations on $\mathbb{F}_{2}$
- Addition +
- $0+0=0$
- $0+1=1$
- $1+0=1$
- $1+1=0$
- Multiplication $\times$
- $0 \times 0=0$
- $0 \times 1=0$
- $1 \times 0=0$
- $1 \times 1=1$
- $\mathbb{F}_{2}$ is also represented as $\operatorname{GF}(2)$

Fact
The set $\mathbb{F}_{2}^{n}$ is a vector space over $\mathbb{F}_{2}$

## Binary Linear Block Code

## Definition

An $(n, k)$ binary linear block code is a $k$-dimensional subspace of $\mathbb{F}_{2}^{n}$

Theorem
Let $S$ be a nonempty subset of $\mathbb{F}_{2}^{n}$. Then $S$ is a subspace of $\mathbb{F}_{2}^{n}$ if $\mathbf{u}+\mathbf{v} \in S$ for any two $\mathbf{u}$ and $\mathbf{v}$ in $S$.

Example (3-Repetition Code)
$C=\{000,111\} \neq \phi$
$000+000=000,000+111=111,111+111=000$

## Example (Single Parity Check Code)

$C=$ Set of vectors of even weight in $\mathbb{F}_{2}^{n}$
$w t(\mathbf{u}+\mathbf{v})=w t(\mathbf{u})+w t(\mathbf{v})-2 w t(\mathbf{u} \cap \mathbf{v})$

## Encoding Binary Linear Block Codes

## Definition

A generator matrix for a $k$-dimensional binary linear block code
$C$ is a $k \times n$ matrix $\mathbf{G}$ whose rows form a basis for $C$.

## Linear Block Code Encoder

Let u be a $1 \times k$ binary vector of information bits. The corresponding codeword is

$$
\mathbf{v}=\mathbf{u} \mathbf{G}
$$

Example (3-Repetition Code)
$\mathbf{G}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$

$$
\begin{aligned}
& {\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
{[0]} & 1 & 1
\end{array}\right]} \\
& {\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]}
\end{aligned}=\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 &
\end{array}\right.
$$

## Encoding Binary Linear Block Codes

Example (Single Parity Check Code)
$n=3, k=2, C=\{000,011,101,110\}$

$$
\begin{aligned}
& \mathbf{G}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right] \\
& {\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]} \\
& {\left[\begin{array}{lll}
0 & 1 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]} \\
& {\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]} \\
& {\left[\begin{array}{lll}
1 & 1 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]}
\end{aligned}
$$

## Encoding Complexity of Binary Linear Block Codes

- Need to store G
- Storage requirement $=O(n k) \ll O\left(n 2^{k}\right)$
- Time complexity $=O(n k)$
- Complexity can be reduced further by imposing more structure in addition to linearity
- Decoding complexity? What is the optimal decoder?


## Decoding Binary Linear Block Codes

- Codewords are equally likely $\Rightarrow$ ML decoder is optimal

$$
\hat{\mathbf{x}}_{M L}=\operatorname{argmax}_{\mathbf{x} \in C} \operatorname{Pr}(\mathbf{y} \mid \mathbf{x})
$$

- Equally likely codewords and channel is $\mathrm{BSC} \Rightarrow$ Minimum distance decoder is optimal

$$
\hat{\mathbf{x}}_{M L}=\operatorname{argmin}_{\mathbf{x} \in C} d(\mathbf{x}, \mathbf{y})
$$

- To exploit linear structure to reduce decoding complexity, we need to study the dual code


## Inner Product of Vectors in $\mathbb{F}_{2}^{n}$

## Definition

Let $\mathbf{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ and $\mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ belong to $\mathbb{F}_{2}^{n}$.
The inner product of $\mathbf{u}$ and $\mathbf{v}$ is given by

$$
\mathbf{u} \cdot \mathbf{v}=\sum_{i=1}^{n} u_{i} v_{i}
$$

$\mathbf{u} \cdot \mathbf{v}=0 \Rightarrow \mathbf{u}$ and $\mathbf{v}$ are orthogonal.
Examples

- ( $\left.\begin{array}{lll}1 & 0 & 0\end{array}\right) \cdot\left(\begin{array}{lll}0 & 1 & 1\end{array}\right)=1 \cdot 0+0 \cdot 1+0 \cdot 1=0$
- (1 1100$) \cdot\left(\begin{array}{lll}0 & 1 & 1\end{array}\right)=1 \cdot 0+1 \cdot 1+0 \cdot 1=1$
- ( $\left.\begin{array}{lll}1 & 1 & 1\end{array}\right) \cdot\left(\begin{array}{lll}0 & 1 & 1\end{array}\right)=1 \cdot 0+1 \cdot 1+1 \cdot 1=0$
- ( $\left.\begin{array}{lll}0 & 1 & 1\end{array}\right) \cdot\left(\begin{array}{lll}0 & 1 & 1\end{array}\right)=0 \cdot 0+1 \cdot 1+1 \cdot 1=0$ Nonzero vectors can be self-orthogonal


## Dual Code of a Linear Block Code

## Definition

Let $C$ be an ( $n, k$ ) binary linear block code. Let $C^{\perp}$ be the set of vectors in $\mathbb{F}_{2}^{n}$ which are orthogonal to all the codewords in $C$.

$$
C^{\perp}=\left\{\mathbf{u} \in \mathbb{F}_{2}^{n} \mid \mathbf{u} \cdot \mathbf{v}=0 \text { for all } \mathbf{v} \in C\right\}
$$

$C^{\perp}$ is a linear block code and is called the dual code of $C$.
Example (3-Repetition Code)
$C=\{000,111\}, C^{\perp}=$ ?

$$
\begin{array}{ll}
000 \cdot 111=0 & 111 \cdot 111=1 \\
001 \cdot 111=1 & 110 \cdot 111=0 \\
010 \cdot 111=1 & 101 \cdot 111=0 \\
100 \cdot 111=1 & 011 \cdot 111=0
\end{array}
$$

$C^{\perp}=\{000,011,101,110\}=$ Single Parity Check Code

## Dimension of the Dual Code

Example (3-Repetition Code and SPC Code)
$C=\{000,111\}, \operatorname{dim} C=1$
$C^{\perp}=\{000,011,101,110\}, \operatorname{dim} C^{\perp}=2$
$\operatorname{dim} C+\operatorname{dim} C^{\perp}=1+2=3$
Theorem
$\operatorname{dim} C+\operatorname{dim} C^{\perp}=n$
Corollary
$C$ is an ( $n, k$ ) binary linear block code $\Rightarrow C^{\perp}$ is an $(n, n-k)$ binary linear block code

## Parity Check Matrix of a Code

## Definition

Let $C$ be an $(n, k)$ binary linear block code and let $C^{\perp}$ be its dual code. A generator matrix $\mathbf{H}$ for $\boldsymbol{C}^{\perp}$ is called a parity check matrix for $C$.

Example (3-Repetition Code)
$C=\{000,111\}$
$C^{\perp}=\{000,011,101,110\}$
A generator matrix of $C^{\perp}$ is $\mathbf{H}=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right]$
H is a parity check matrix of $C$.

## Parity Check Matrix Completely Describes a Code

Theorem
Let $C$ be a linear block code with parity check matrix $\mathbf{H}$. Then

$$
\mathbf{v} \in C \Longleftrightarrow \mathbf{v} \cdot \mathbf{H}^{T}=\mathbf{0}
$$

Example (3-Repetition Code)
$C=\{000,111\}, \mathbf{H}=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right]$
Forward direction: $\mathbf{v} \in \mathbf{C} \Rightarrow \mathbf{v} \cdot \mathbf{H}^{\top}=\mathbf{0}$

$$
\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 0
\end{array}\right],\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 0
\end{array}\right]
$$

## Parity Check Matrix Completely Describes a Code

Theorem
Let $C$ be a linear block code with parity check matrix $\mathbf{H}$. Then

$$
\mathbf{v} \in C \Longleftrightarrow \mathbf{v} \cdot \mathbf{H}^{T}=\mathbf{0}
$$

Example (3-Repetition Code)
$C=\{000,111\}, \mathbf{H}=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right]$
Reverse direction: $\mathbf{v} \in \mathbf{C} \Leftarrow \mathbf{v} \cdot \mathbf{H}^{\top}=\mathbf{0}$

$$
\begin{aligned}
& \mathbf{v} \cdot \mathbf{H}^{T}=\left[\begin{array}{lll}
v_{1} & v_{2} & v_{3}
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
v_{1}+v_{3} & v_{2}+v_{3}
\end{array}\right] \\
& \mathbf{v} \cdot \mathbf{H}^{T}=\mathbf{0} \Rightarrow v_{1}+v_{3}=0, v_{2}+v_{3}=0 \\
& \Rightarrow v_{1}=v_{3}, v_{2}=v_{3} \Rightarrow v_{1}=v_{2}=v_{3}
\end{aligned}
$$

## Decoding Binary Linear Block Codes

- Let a codeword $\mathbf{x}$ be sent through a BSC to get $\mathbf{y}$,

$$
\mathbf{y}=\mathbf{x}+\mathbf{e}
$$

where $\mathbf{e}$ is the error vector

- The probability of observing $\mathbf{y}$ given $\mathbf{x}$ was transmitted is given by

$$
\begin{aligned}
\operatorname{Pr}(\mathbf{y} \mid \mathbf{x}) & =p^{d(\mathbf{x}, \mathbf{y})}(1-p)^{n-d(\mathbf{x}, \mathbf{y})} \\
& =p^{\mathrm{wt}(\mathbf{e})}(1-p)^{n-\mathrm{wt}(\mathbf{e})} \\
& =(1-p)^{n}\left(\frac{p}{1-p}\right)^{\mathrm{wt}(\mathbf{e})}
\end{aligned}
$$

- If $p<\frac{1}{2}$, lower weight error vectors are more likely


## Decoding Binary Linear Block Codes

- Optimal decoder is given by

$$
\begin{aligned}
\hat{\mathbf{x}}_{M L} & =\operatorname{argmin}_{\mathbf{x} \in C} d(\mathbf{x}, \mathbf{y}) \\
& =\mathbf{y}+\hat{\mathbf{e}}_{M L}
\end{aligned}
$$

where $\hat{\mathbf{e}}_{M L}=$ Most likely error vector such that $\mathbf{y}+\mathbf{e} \in C$.
$\cdot \mathbf{y}+\mathbf{e} \in C \Longleftrightarrow(\mathbf{y}+\mathbf{e}) \cdot \mathbf{H}^{T}=\mathbf{0} \Longleftrightarrow \mathbf{e} \cdot \mathbf{H}^{T}=\mathbf{y} \cdot \mathbf{H}^{T}$

- If $\mathbf{s}=\mathbf{y} \cdot \mathbf{H}^{T}$, the most likely error vector is

$$
\hat{\mathbf{e}}_{M L}=\underset{\mathbf{e} \in \mathbb{F}_{2}^{n}, \mathbf{e} \cdot \mathbf{H}^{T}=\mathbf{s}}{\operatorname{argmin}} \mathrm{wt}(\mathbf{e})
$$

- Time complexity $=O\left(p(n) 2^{k}\right)$ where $p$ is a polynomial
- For each $\mathbf{s}$, the $\hat{\mathbf{e}}_{M L}$ can be precomputed and stored
- $\mathbf{s}$ is $1 \times n-k$ binary vector $\Rightarrow$ Storage required is $O\left(n 2^{n-k}\right)$


## Summary

## Complexity Comparison

General Block Codes

- Encoding $=O\left(n 2^{k}\right)$
- Decoding $=O\left(n 2^{k}\right)$

Linear Block Codes

- Encoding $=O(n k)$
- Decoding = $O\left(p(n) 2^{\min (k, n-k)}\right)$

Observations

- Linear structure in codes reduces encoding complexity
- Decoding complexity is still exponential
- Need for codes with low complexity decoders

Questions? Takeaways?

