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Factoring xq − x over a Field Fq and Fp

Example
F = {0,1, y , y + 1} ⊂ F2[y ] under + and ∗ modulo y2 + y + 1

x4 − x = x(x − 1)(x − y)(x − y − 1)
= x(x + 1)[x2 − x(y + y + 1) + y2 + y ]
= x(x + 1)(x2 + x + 1)

The prime subfield of F is F2. x , x + 1, x2 + x + 1 ∈ F2[x ] are
called the minimal polynomials of F

Example
F5 = {0,1,2,3,4}

x5 − x = x(x − 1)(x − 2)(x − 3)(x − 4)

The prime subfield of F5 is F5.
x , x − 1, x − 2, x − 3, x − 4 ∈ F5[x ] are called the minimal
polynomials of F5 2 / 13



Factoring xq − x over a Field Fq and Fp

• Let Fq be a finite field with characteristic p
• Fq has a subfield isomorphic to Fp
• Consider the polynomial xq − x ∈ Fq[x ]
• Since the prime subfield contains ±1, xq − x ∈ Fp[x ]
• xq − x factors into a product of prime polynomials

gi(x) ∈ Fp[x ]
xq − x =

∏
i

gi(x)

The gi(x)’s are called the minimal polynomials of Fq
• There are two factorizations of xq − x

xq−x =
∏
β∈Fq

(x−β) =
∏

i

gi(x) =⇒ gi(x) =
deg gi (x)∏

j=1

(x−βij)

• Each β ∈ Fq is a root of exactly one minimal polynomial of
Fq, called the minimal polynomial of β
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Properties of Minimal Polynomials (1)
Let Fq be a finite field with characteristic p. Let g(x) be the
minimal polynomial of β ∈ Fq.
g(x) is the monic polynomial of least degree in Fp[x ] such that
g(β) = 0

Proof.

• Let h(x) ∈ Fp[x ] be a monic polynomial of least degree
such that h(β) = 0

• Dividing g(x) by h(x), we get g(x) = q(x)h(x) + r(x)
where deg r(x) < deg h(x)

• Since r(x) ∈ Fp[x ] and r(β) = 0, by the least degree
property of h(x) we have r(x) = 0 =⇒ h(x) divides g(x)

• Since g(x) is irreducible and deg h(x) = deg g(x)
• Since both h(x) and g(x) are monic, h(x) = g(x)
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Properties of Minimal Polynomials (2)
Let Fq be a finite field with characteristic p. Let g(x) be the
minimal polynomial of β ∈ Fq.
For any f (x) ∈ Fp[x ], f (β) = 0 ⇐⇒ g(x) divides f (x)

Proof.

• (⇐=) If g(x) divides f (x), then f (x) = a(x)g(x)
=⇒ f (β) = a(β)g(β) = 0

• (=⇒) Suppose f (x) ∈ Fp[x ] and f (β) = 0
• Dividing f (x) by g(x), we get f (x) = q(x)g(x) + r(x) where

deg r(x) < deg g(x)
• Since r(x) ∈ Fp[x ] and r(β) = 0, by the least degree

property of g(x) we have r(x) = 0 =⇒ g(x) divides f (x)
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Linearity of Taking pth Power
Let Fq be a finite field with characteristic p.
• For any α ∈ Fq, pα = 0
• For any α, β ∈ Fq

(α+ β)p =

p∑
j=0

(
p
j

)
αjβp−j = αp + βp

• For any integer n ≥ 1, (α+ β)pn
= αpn

+ βpn

• For any g(x) =
∑m

i=0 gix i ∈ Fq[x ],

[g(x)]p
n

=
(

g0 + g1x + g2x2 + · · ·+ gmxm
)pn

= gpn

0 + gpn

1 xpn
+ gpn

2 x2pn
+ · · ·+ gpn

m xmpn
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Test for Membership in Fp[x ]
Let Fq be a finite field with characteristic p. Fq has a subfield
isomorphic to Fp. For any g(x) ∈ Fq[x ]

gp(x) = g(xp) ⇐⇒ g(x) ∈ Fp[x ]

Note that g(x) ∈ Fp[x ] ⇐⇒ all its coefficients gi belong to Fp

Proof.

gp(x) =
(

g0 + g1x + g2x2 + · · ·+ gmxm
)p

= gp
0 + gp

1xp + gp
2x2p + · · ·+ gp

mxmp

g(xp) = g0 + g1xp + g2x2p + · · ·+ gmxmp

gp(x) = g(xp) ⇐⇒ gp
i = gi ⇐⇒ gi ∈ Fp
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Roots of Minimal Polynomials

Theorem
Let Fq be a finite field with characteristic p. Let g(x) be the
minimal polynomial of β ∈ Fq.
If q = pm, then the roots of g(x) are of the form{

β, βp, βp2
, . . . , βpn−1

}
where n is a divisor of m

Proof.
We need to show that
• There is an integer n such that βpi

is a root of g(x) for
1 ≤ i < n

• n divides m
• All the roots of g(x) are of this form
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Roots of Minimal Polynomials

Proof continued.

• Since g(x) ∈ Fp[x ], gp(x) = g(xp)

• If β is a root of g(x), then βp is also a root

• βp2
, βp3

, βp4
, . . . , are all roots of g(x)

• Let n be the smallest integer such that βpn
= β

• All elements in the set β, βp, βp2
, βp3

, . . . , βpn−1
are distinct

• If βpa
= βpb

for some 0 ≤ a < b ≤ n − 1, then(
βpa
)pn−b

=
(
βpb
)pn−b

=⇒ βpn+a−b
= βpn

= β

• If n does not divide m, then m = an + r where 0 < r < n

βpm
= β =⇒ βpr

= β which is a contradiction

9 / 13



Roots of Minimal Polynomials

Proof continued.

• It remains to be shown that
{
β, βp, βp2

, . . . , βpn−1
}

are the
only roots of g(x)

• Let h(x) =
∏n−1

i=0 (x − βpi
)

• h(x) ∈ Fp[x ] since

hp(x) =
n−1∏
i=0

(x−βpi
)p =

n−1∏
i=0

(xp−βpi+1
) =

n−1∏
i=0

(xp−βpi
) = h(xp)

• Since g(x) is the least degree monic polynomial in Fp[x ]
with β as a root, g(x) = h(x)

Note: The roots of a minimal polynomial are said to form a
cyclotomic coset

10 / 13



Minimal Polynomials of F16

The prime subfield of F16 is F2.

x16+x = x(x+1)(x2+x+1)(x4+x+1)(x4+x3+1)(x4+x3+x2+x+1)

• The number of primitive elements of F16 is φ(15) = 8
• All the roots of x4 + x + 1 and x4 + x3 + 1 are primitive

elements
• Let α be a root of x4 + x + 1. F16 = {0,1, α, α2, . . . , α14}

• x has root 0 and x + 1 has root 1
• The roots of x4 + x + 1 are {α, α2, α4, α8}
• The roots of x2 + x + 1 are {α5, α10}
• The roots of x4 + x3 + x2 + x + 1 are {α3, α6, α9, α12}
• The roots of x4 + x3 + 1 are {α7, α14, α13, α11}
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Minimal Polynomials of F16
x16 + x = x(x + 1)(x2 + x + 1)(x4 + x + 1)(x4 + x3 + 1)(x4 + x3 + x2 + x + 1)

Power Polynomial Tuple
0 0

(
0 0 0 0

)
1 1

(
1 0 0 0

)
α α

(
0 1 0 0

)
α2 α2 (

0 0 1 0
)

α3 α3 (
0 0 0 1

)
α4 1 + α

(
1 1 0 0

)
α5 α+ α2 (

0 1 1 0
)

α6 α2 + α3 (
0 0 1 1

)
α7 1 + α+ α3 (

1 1 0 1
)

α8 1 + α2 (
1 0 1 0

)
α9 α+ α3 (

0 1 0 1
)

α10 1 + α+ α2 (
1 1 1 0

)
α11 α+ α2 + α3 (

0 1 1 1
)

α12 1 + α+ α2 + α3 (
1 1 1 1

)
α13 1 + α2 + α3 (

1 0 1 1
)

α14 1 + α3 (
1 0 0 1

)
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Questions? Takeaways?
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