Minimal Polynomials

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

October 9, 2014

Factoring $x^{q}-x$ over a Field F_{q} and F_{p}

Example

$F=\{0,1, y, y+1\} \subset \mathbb{F}_{2}[y]$ under + and $*$ modulo $y^{2}+y+1$

$$
\begin{aligned}
x^{4}-x & =x(x-1)(x-y)(x-y-1) \\
& =x(x+1)\left[x^{2}-x(y+y+1)+y^{2}+y\right] \\
& =x(x+1)\left(x^{2}+x+1\right)
\end{aligned}
$$

The prime subfield of F is $\mathbb{F}_{2} . x, x+1, x^{2}+x+1 \in \mathbb{F}_{2}[x]$ are called the minimal polynomials of F
Example
$\mathbb{F}_{5}=\{0,1,2,3,4\}$

$$
x^{5}-x=x(x-1)(x-2)(x-3)(x-4)
$$

The prime subfield of \mathbb{F}_{5} is \mathbb{F}_{5}.
$x, x-1, x-2, x-3, x-4 \in \mathbb{F}_{5}[x]$ are called the minimal polynomials of \mathbb{F}_{5}

Factoring $x^{q}-x$ over a Field F_{q} and F_{p}

- Let F_{q} be a finite field with characteristic p
- F_{q} has a subfield isomorphic to \mathbb{F}_{p}
- Consider the polynomial $x^{q}-x \in F_{q}[x]$
- Since the prime subfield contains $\pm 1, x^{q}-x \in \mathbb{F}_{p}[x]$
- $x^{q}-x$ factors into a product of prime polynomials $g_{i}(x) \in \mathbb{F}_{p}[x]$

$$
x^{q}-x=\prod_{i} g_{i}(x)
$$

The $g_{i}(x)$'s are called the minimal polynomials of F_{q}

- There are two factorizations of $x^{q}-x$

$$
x^{q}-x=\prod_{\beta \in F_{q}}(x-\beta)=\prod_{i} g_{i}(x) \Longrightarrow g_{i}(x)=\prod_{j=1}^{\operatorname{deg} g_{i}(x)}\left(x-\beta_{i j}\right)
$$

- Each $\beta \in F_{q}$ is a root of exactly one minimal polynomial of F_{q}, called the minimal polynomial of β

Properties of Minimal Polynomials (1)

Let F_{q} be a finite field with characteristic p. Let $g(x)$ be the minimal polynomial of $\beta \in F_{q}$.
$g(x)$ is the monic polynomial of least degree in $\mathbb{F}_{p}[x]$ such that $g(\beta)=0$

Proof.

- Let $h(x) \in \mathbb{F}_{p}[x]$ be a monic polynomial of least degree such that $h(\beta)=0$
- Dividing $g(x)$ by $h(x)$, we get $g(x)=q(x) h(x)+r(x)$ where $\operatorname{deg} r(x)<\operatorname{deg} h(x)$
- Since $r(x) \in \mathbb{F}_{p}[x]$ and $r(\beta)=0$, by the least degree property of $h(x)$ we have $r(x)=0 \Longrightarrow h(x)$ divides $g(x)$
- Since $g(x)$ is irreducible and deg $h(x)=\operatorname{deg} g(x)$
- Since both $h(x)$ and $g(x)$ are monic, $h(x)=g(x)$

Properties of Minimal Polynomials (2)

Let F_{q} be a finite field with characteristic p. Let $g(x)$ be the minimal polynomial of $\beta \in F_{q}$.
For any $f(x) \in \mathbb{F}_{p}[x], f(\beta)=0 \Longleftrightarrow g(x)$ divides $f(x)$

Proof.

- (\Longleftarrow) If $g(x)$ divides $f(x)$, then $f(x)=a(x) g(x)$ $\Longrightarrow f(\beta)=a(\beta) g(\beta)=0$
- (\Longrightarrow) Suppose $f(x) \in \mathbb{F}_{p}[x]$ and $f(\beta)=0$
- Dividing $f(x)$ by $g(x)$, we get $f(x)=q(x) g(x)+r(x)$ where $\operatorname{deg} r(x)<\operatorname{deg} g(x)$
- Since $r(x) \in \mathbb{F}_{p}[x]$ and $r(\beta)=0$, by the least degree property of $g(x)$ we have $r(x)=0 \Longrightarrow g(x)$ divides $f(x)$

Linearity of Taking pth Power

Let F_{q} be a finite field with characteristic p.

- For any $\alpha \in F_{q}, p \alpha=0$
- For any $\alpha, \beta \in F_{q}$

$$
(\alpha+\beta)^{p}=\sum_{j=0}^{p}\binom{p}{j} \alpha^{j} \beta^{p-j}=\alpha^{p}+\beta^{p}
$$

- For any integer $n \geq 1,(\alpha+\beta)^{p^{n}}=\alpha^{p^{n}}+\beta^{p^{n}}$
- For any $g(x)=\sum_{i=0}^{m} g_{i} x^{i} \in F_{q}[x]$,

$$
\begin{aligned}
{[g(x)]^{p^{n}} } & =\left(g_{0}+g_{1} x+g_{2} x^{2}+\cdots+g_{m} x^{m}\right)^{p^{n}} \\
& =g_{0}^{p^{n}}+g_{1}^{p^{n}} x^{p^{n}}+g_{2}^{p^{n}} x^{2 p^{n}}+\cdots+g_{m}^{p^{n}} x^{m p^{n}}
\end{aligned}
$$

Test for Membership in $\mathbb{F}_{p}[x]$

Let F_{q} be a finite field with characteristic $p . F_{q}$ has a subfield isomorphic to \mathbb{F}_{p}. For any $g(x) \in F_{q}[x]$

$$
g^{p}(x)=g\left(x^{p}\right) \Longleftrightarrow g(x) \in \mathbb{F}_{p}[x]
$$

Note that $g(x) \in \mathbb{F}_{p}[x] \Longleftrightarrow$ all its coefficients g_{i} belong to \mathbb{F}_{p} Proof.

$$
\begin{aligned}
g^{p}(x) & =\left(g_{0}+g_{1} x+g_{2} x^{2}+\cdots+g_{m} x^{m}\right)^{p} \\
& =g_{0}^{p}+g_{1}^{p} x^{p}+g_{2}^{p} x^{2 p}+\cdots+g_{m}^{p} x^{m p} \\
g\left(x^{p}\right) & =g_{0}+g_{1} x^{p}+g_{2} x^{2 p}+\cdots+g_{m} x^{m p} \\
g^{p}(x) & =g\left(x^{p}\right) \Longleftrightarrow g_{i}^{p}=g_{i} \Longleftrightarrow g_{i} \in \mathbb{F}_{p}
\end{aligned}
$$

Roots of Minimal Polynomials

Theorem

Let F_{q} be a finite field with characteristic p. Let $g(x)$ be the minimal polynomial of $\beta \in F_{q}$.
If $q=p^{m}$, then the roots of $g(x)$ are of the form

$$
\left\{\beta, \beta^{p}, \beta^{p^{2}}, \ldots, \beta^{p^{n-1}}\right\}
$$

where n is a divisor of m
Proof.
We need to show that

- There is an integer n such that $\beta^{p^{i}}$ is a root of $g(x)$ for

$$
1 \leq i<n
$$

- n divides m
- All the roots of $g(x)$ are of this form

Roots of Minimal Polynomials

Proof continued.

- Since $g(x) \in \mathbb{F}_{p}[x], g^{p}(x)=g\left(x^{p}\right)$
- If β is a root of $g(x)$, then β^{p} is also a root
- $\beta^{p^{2}}, \beta^{p^{3}}, \beta^{p^{4}}, \ldots$, are all roots of $g(x)$
- Let n be the smallest integer such that $\beta^{p^{n}}=\beta$
- All elements in the set $\beta, \beta^{p}, \beta^{p^{2}}, \beta^{p^{3}}, \ldots, \beta^{p^{n-1}}$ are distinct
- If $\beta^{p^{a}}=\beta^{p^{b}}$ for some $0 \leq a<b \leq n-1$, then

$$
\left(\beta^{p^{a}}\right)^{p^{n-b}}=\left(\beta^{p^{b}}\right)^{p^{n-b}} \Longrightarrow \beta^{p^{n+a-b}}=\beta^{p^{n}}=\beta
$$

- If n does not divide m, then $m=a n+r$ where $0<r<n$

$$
\beta^{p^{m}}=\beta \Longrightarrow \beta^{p^{r}}=\beta \text { which is a contradiction }
$$

Roots of Minimal Polynomials

Proof continued.

- It remains to be shown that $\left\{\beta, \beta^{p}, \beta^{p^{2}}, \ldots, \beta^{p^{n-1}}\right\}$ are the only roots of $g(x)$
- Let $h(x)=\prod_{i=0}^{n-1}\left(x-\beta^{p^{i}}\right)$
- $h(x) \in \mathbb{F}_{p}[x]$ since

$$
h^{p}(x)=\prod_{i=0}^{n-1}\left(x-\beta^{p^{i}}\right)^{p}=\prod_{i=0}^{n-1}\left(x^{p}-\beta^{p^{i+1}}\right)=\prod_{i=0}^{n-1}\left(x^{p}-\beta^{p^{i}}\right)=h\left(x^{p}\right)
$$

- Since $g(x)$ is the least degree monic polynomial in $\mathbb{F}_{p}[x]$ with β as a root, $g(x)=h(x)$

Note: The roots of a minimal polynomial are said to form a cyclotomic coset

Minimal Polynomials of F_{16}

The prime subfield of F_{16} is \mathbb{F}_{2}.
$x^{16}+x=x(x+1)\left(x^{2}+x+1\right)\left(x^{4}+x+1\right)\left(x^{4}+x^{3}+1\right)\left(x^{4}+x^{3}+x^{2}+x+1\right)$

- The number of primitive elements of F_{16} is $\phi(15)=8$
- All the roots of $x^{4}+x+1$ and $x^{4}+x^{3}+1$ are primitive elements
- Let α be a root of $x^{4}+x+1$. $F_{16}=\left\{0,1, \alpha, \alpha^{2}, \ldots, \alpha^{14}\right\}$
- x has root 0 and $x+1$ has root 1
- The roots of $x^{4}+x+1$ are $\left\{\alpha, \alpha^{2}, \alpha^{4}, \alpha^{8}\right\}$
- The roots of $x^{2}+x+1$ are $\left\{\alpha^{5}, \alpha^{10}\right\}$
- The roots of $x^{4}+x^{3}+x^{2}+x+1$ are $\left\{\alpha^{3}, \alpha^{6}, \alpha^{9}, \alpha^{12}\right\}$
- The roots of $x^{4}+x^{3}+1$ are $\left\{\alpha^{7}, \alpha^{14}, \alpha^{13}, \alpha^{11}\right\}$

Minimal Polynomials of F_{16}

$$
x^{16}+x=x(x+1)\left(x^{2}+x+1\right)\left(x^{4}+x+1\right)\left(x^{4}+x^{3}+1\right)\left(x^{4}+x^{3}+x^{2}+x+1\right)
$$

Power	Polynomial	Tuple		
0	0	$(0$	0	0
0				

Questions? Takeaways?

