Repetition Code

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

July 22, 2014

3-Repetition Code

- Each message bit is repeated 3 times

- How many errors can it correct?
- How many errors can the following code correct?

$$
0 \rightarrow 101,1 \rightarrow 010
$$

- What about this code?

$$
0 \rightarrow 101,1 \rightarrow 110
$$

- Error correcting capability depends on the distance between the codewords

5-Repetition Code

- Each message bit is repeated 5 times
- How many errors can it correct?
- Is it better than the 3-repetition code?
- A code has rate $\frac{k}{n}$ if it maps k-bit messages to n-bit codewords
- There is a tradeoff between rate and error correcting capability

Decoder

- Majority decoder was used for decoding repetition codes
- How do we know the majority decoder is the best?
- Consider a channel which flips all input bits. Does the majority decoder work?
- Consider a channel which causes burst errors. What is the best decoder?
- The optimal decoder depends on the channel

Binary Symmetric Channel

- p is called the crossover probability
- Abstraction of a modulator-channel-demodulator sequence
- Any error pattern is possible
- It is impossible to correct all errors

Optimal Decoder for 3-Repetition Code over BSC

- Let X be the transmitted bit and \hat{X} be the decoded bit
- What is a decoder?
- Let Γ_{0} and Γ_{1} be a partition of $\Gamma=\{0,1\}^{3}$
- If \mathbf{Y} is the received 3-tuple then

$$
\hat{X}= \begin{cases}0 & \text { if } \mathbf{Y} \in \Gamma_{0} \\ 1 & \text { if } \mathbf{Y} \in \Gamma_{1}\end{cases}
$$

- How can we compare decoders?
- Probability of correct decision $=\operatorname{Pr}(\hat{X}=X)$

Maximizing Probability of Correct Decision

Let $\pi_{0}=\operatorname{Pr}(X=0)$ and $\pi_{1}=\operatorname{Pr}(X=1)$

$$
\begin{aligned}
\operatorname{Pr} & (\hat{X}=X) \\
& =\pi_{0} \operatorname{Pr}\left(\mathbf{Y} \in \Gamma_{0} \mid X=0\right)+\pi_{1} \operatorname{Pr}\left(\mathbf{Y} \in \Gamma_{1} \mid X=1\right) \\
& =\pi_{0}\left[1-\operatorname{Pr}\left(\mathbf{Y} \in \Gamma_{1} \mid X=0\right)\right]+\pi_{1} \operatorname{Pr}\left(\mathbf{Y} \in \Gamma_{1} \mid X=1\right) \\
& =\pi_{0}+\sum_{\mathbf{y} \in \Gamma_{1}}\left[\pi_{1} \operatorname{Pr}(\mathbf{Y}=\mathbf{y} \mid X=1)-\pi_{0} \operatorname{Pr}(\mathbf{Y}=\mathbf{y} \mid X=0)\right]
\end{aligned}
$$

Maximizing as a function of Γ_{1} gives us the following partitions

$$
\begin{aligned}
& \Gamma_{0}=\left\{\mathbf{y} \in \Gamma \mid \pi_{1} \operatorname{Pr}(\mathbf{Y}=\mathbf{y} \mid X=1)<\pi_{0} \operatorname{Pr}(\mathbf{Y}=\mathbf{y} \mid X=0)\right\} \\
& \Gamma_{1}=\left\{\mathbf{y} \in \Gamma \mid \pi_{1} \operatorname{Pr}(\mathbf{Y}=\mathbf{y} \mid X=1) \geq \pi_{0} \operatorname{Pr}(\mathbf{Y}=\mathbf{y} \mid X=0)\right\}
\end{aligned}
$$

Optimal Decoder for Equally Likely Inputs

- Suppose $\pi_{0}=\pi_{1}=\frac{1}{2}$
- Let $d(\mathbf{y}, \mathbf{x})$ be the Hamming distance between \mathbf{y} and \mathbf{x}

$$
\begin{aligned}
& \operatorname{Pr}(\mathbf{Y}=\mathbf{y} \mid X=1)=p^{d(\mathbf{y}, 111)}(1-p)^{3-d(\mathbf{y}, 111)} \\
& \operatorname{Pr}(\mathbf{Y}=\mathbf{y} \mid X=0)=p^{d(\mathbf{y}, 000)}(1-p)^{3-d(\mathbf{y}, 000)}
\end{aligned}
$$

- If $p<\frac{1}{2}$, then

$$
\begin{aligned}
& \Gamma_{0}=\{\mathbf{y} \in \Gamma \mid d(\mathbf{y}, 000)<d(\mathbf{y}, 111)\}=\{000,100,010,001\} \\
& \Gamma_{1}=\{\mathbf{y} \in \Gamma \mid d(\mathbf{y}, 000) \geq d(\mathbf{y}, 111)\}=\{111,011,101,110\}
\end{aligned}
$$

- The majority decoder is optimal for a BSC if $p<\frac{1}{2}$ and inputs are equally likely

Error Analysis for 3-Repetition Code

$$
\Gamma_{0}=\{000,100,010,001\}, \Gamma_{1}=\{111,011,101,110\}
$$

$$
\operatorname{Pr}(\hat{X} \neq X)=\pi_{0} \operatorname{Pr}\left(\mathbf{Y} \in \Gamma_{1} \mid X=0\right)+\pi_{1} \operatorname{Pr}\left(\mathbf{Y} \in \Gamma_{0} \mid X=1\right)
$$

$$
=p^{3}+3 p^{2}(1-p)
$$

Simulation of 3-Repetition Code Performance

- Simulations are useful to verify analysis or when analysis is intractable
- Simulation procedure for 3-repetition code

1. Generate a message bit X
2. Encode bit to get codeword
3. Generate errors in the codeword
4. Decode corrupted codeword to get \hat{X}
5. Increment number of decision errors E if $\hat{X} \neq X$
6. Repeat steps 1 to $5 N$ times
7. Simulated value of $\operatorname{Pr}(\hat{X} \neq X)$ is $\frac{E}{N}$

- How to do steps 1 and 3?
- How to choose N in step 6 ?

Error Analysis and Simulations for n-Repetition Code

Assignment 1

Questions?

