Vector Spaces

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

July 31, 2014

Vector Spaces

Let *V* be a set with a binary operation + (addition) defined on it. Let *F* be a field. Let a multiplication operation, denoted by \cdot , be defined between elements of *F* and *V*. The set *V* is called a vector space over *F* if

- V is a commutative group under addition
- For any $a \in F$ and $\mathbf{v} \in V$, $a \cdot \mathbf{v} \in V$
- For any $\mathbf{u}, \mathbf{v} \in V$ and $a, b \in F$

$$a \cdot (\mathbf{u} + \mathbf{v}) = a \cdot \mathbf{u} + b \cdot \mathbf{v}$$

 $(a + b) \cdot \mathbf{v} = a \cdot \mathbf{v} + b \cdot \mathbf{v}$

• For any $\mathbf{v} \in V$ and $a, b \in F$

$$(ab) \cdot \mathbf{v} = a \cdot (b \cdot \mathbf{v})$$

• Let 1 be the unit element of *F*. For any $\mathbf{v} \in V$, $1 \cdot \mathbf{v} = \mathbf{v}$

Binary Operations

Definition

A binary operation on a set A is a function from $A \times A$ to A

Examples

- Addition on the natural numbers $\ensuremath{\mathbb{N}}$
- Subtraction on the integers $\ensuremath{\mathbb{Z}}$

Definition

A binary operation \star on A is associative if for any $a, b, c \in A$

$$a \star (b \star c) = (a \star b) \star c$$

Definition

A binary operation \star on A is commutative if for any $a, b \in A$

Groups

Definition

A set G with a binary operation \star defined on it is called a group if

- The operation \star is associative
- There exists an $e \in G$ such that for any $a \in G$

$$a \star e = e \star a = a$$
.

The element *e* is called the identity element of *G*

• For every $a \in G$, there exists an element $b \in G$ such that

$$a \star b = b \star a = e$$

Examples

- Addition on the integers $\ensuremath{\mathbb{Z}}$
- Modulo *m* addition on $\mathbb{Z}_m = \{0, 1, 2, ..., m-1\}$

Commutative Groups

Definition

A group G is called a commutative group if its binary operation is commutative.

Commutative groups are also called abelian groups.

Examples

- Addition on the integers $\ensuremath{\mathbb{Z}}$
- Modulo *m* addition on $\mathbb{Z}_m = \{0, 1, 2, ..., m 1\}$
- Examples of non-abelian groups?

Fields

Definition

A set F together with two binary operations + and * is a field if

- *F* is a commutative group under +. The identity under + is called the zero element of *F*.
- The set of non-zero elements of *F* is a commutative group under *. The identity under * is called the unit element of *F*.

$$a*(b+c) = a*b + a*c$$

Examples

- \mathbb{R} with usual addition and multiplication
- \mathbb{Q} with usual addition and multiplication
- + $\mathbb{F}_2 = \{0,1\}$ with mod 2 addition and usual multiplication

Vector Spaces

Let *V* be a set with a binary operation + (addition) defined on it. Let *F* be a field. Let a multiplication operation, denoted by \cdot , be defined between elements of *F* and *V*. The set *V* is called a *vector space* over *F* if

- V is a commutative group under addition
- For any $a \in F$ and $\mathbf{v} \in V$, $a \cdot \mathbf{v} \in V$
- For any $\mathbf{u}, \mathbf{v} \in V$ and $a, b \in F$

$$a \cdot (\mathbf{u} + \mathbf{v}) = a \cdot \mathbf{u} + b \cdot \mathbf{v}$$

 $(a + b) \cdot \mathbf{v} = a \cdot \mathbf{v} + b \cdot \mathbf{v}$

• For any $\mathbf{v} \in V$ and $a, b \in F$

$$(ab) \cdot \mathbf{v} = a \cdot (b \cdot \mathbf{v})$$

• Let 1 be the unit element of *F*. For any $\mathbf{v} \in V$, $1 \cdot \mathbf{v} = \mathbf{v}$

\mathbb{F}_2^n is a vector space over \mathbb{F}_2

- Addition in

 ⁿ
 ²
 is defined as component-wise addition
 modulo 2
- Multiplication between elements of \mathbb{F}_2 and $\bm{v}\in\mathbb{F}_2^n$ is defined as follows

$$0 \cdot \mathbf{v} = \mathbf{0}$$
$$1 \cdot \mathbf{v} = \mathbf{v}$$

- \mathbb{F}_2^n is a commutative group under addition
- All other properties are easy to verify

Subspaces

Definition

Let V be vector space over a field F. A subset S of V is called a subspace of V if it is also a vector space over F.

Theorem

Let S be a nonempty subset of a vector space V over a field F. Then S is a subspace of V if

- For any $\mathbf{u}, \mathbf{v} \in S$, $\mathbf{u} + \mathbf{v}$ also belongs to S.
- For any $a \in F$ and $\mathbf{u} \in S$, $a \cdot \mathbf{u}$ is also in S.

Questions? Takeaways?