1. [5 points] Prove that the Hamming distance satisfies the triangle inequality, i.e. $d(\mathbf{u}, \mathbf{v}) \leq d(\mathbf{u}, \mathbf{w})+d(\mathbf{w}, \mathbf{v})$ for all n-tuples $\mathbf{u}, \mathbf{v}, \mathbf{w}$.
2. [5 points] Let p be a prime number. Prove that the set $\mathbb{F}_{p}=\{0,1,2, \ldots, p-1\}$ is a field under integer addition and multiplication modulo p. Give an example to show that \mathbb{F}_{p} is not a field if p is composite.
3. [5 points] Prove that for a binary block code with minimum distance $d_{\text {min }}$, the minimum distance decoder can correct upto $\left\lfloor\frac{d_{\min }-1}{2}\right\rfloor$ errors.
4. [5 points] Prove that the n-repetition code and the $(n, n-1)$ single parity check code are the dual codes of each other.
5. [5 points] Prove that $\left(C^{\perp}\right)^{\perp}=C$ when C is a linear block code. Hint: $\operatorname{dim} C+$ $\operatorname{dim} C^{\perp}=n$ where n is codeword length.
6. [5 points] Let the generator matrix of an (n, k) binary linear block code C be of the form $\left[\begin{array}{ll}I_{k} & P\end{array}\right]$ where I_{k} is the $k \times k$ identity matrix and P is a $k \times n-k$ matrix. Show that $\left[\begin{array}{ll}P^{T} & I_{n-k}\end{array}\right]$ is a parity check matrix for C.
7. [5 points] Let C be a linear block code with parity check matrix H. Prove that

$$
\mathbf{v} \in C \Longleftrightarrow \mathbf{v} \cdot \mathbf{H}^{T}=\mathbf{0}
$$

8. [5 points] Let C be a binary linear block code given by the vectors

$$
\begin{aligned}
& {[0,0,0,0,0,0,0],[1,0,0,0,0,0,1],[0,1,0,0,1,0,0],[1,1,0,0,1,0,1],} \\
& {[0,0,1,0,0,1,0],[1,0,1,0,0,1,1],[0,1,1,0,1,1,0],[1,1,1,0,1,1,1],} \\
& {[0,0,0,1,0,0,1],[1,0,0,1,0,0,0],[0,1,0,1,1,0,1],[1,1,0,1,1,0,0],} \\
& {[0,0,1,1,0,1,1],[1,0,1,1,0,1,0],[0,1,1,1,1,1,1],[1,1,1,1,1,1,0]}
\end{aligned}
$$

(a) What is the dimension of C^{\perp} ?
(b) What is the minimum distance of C^{\perp} ?
9. [5 points] The first row of a standard array is given below where the last four entries are missing. It is known that this standard array has 8 columns.

$$
000000110001101010 \begin{array}{lllll}
000111 & * & * & *
\end{array}
$$

(a) Complete the standard array by giving all the remaining columns and rows.
(b) If the code corresponding to this standard array is used over a binary symmetric channel with crossover probability p, what is the probability of decoding error?
10. [5 points] Consider a binary linear code with generator matrix

$$
G=\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1
\end{array}\right]
$$

Suppose a codeword from this code is sent over a binary symmetric channel with crossover probability p. What is the probability that the received vector is a codeword?
11. [5 points] Let C_{1}, C_{2} be binary linear block codes of same length n and dimensions k_{1}, k_{2} respectively. Let d_{i} be the minimum distance of C_{i} for $i=1,2$. Consider the set of vectors in $\mathbb{F}_{2}^{2 n}$

$$
C_{3}=\left\{\left.\left[\begin{array}{ll}
\mathbf{u} & \mathbf{v}
\end{array}\right] \right\rvert\, \mathbf{u} \in C_{1}, \mathbf{v} \in C_{2}\right\} .
$$

(a) Show that C_{3} is a linear block code.
(b) What is the dimension of C_{3} ? Explain your answer.
(c) What is the minimum distance of C_{3} ? Explain your answer.
(d) Let G_{i} be a generator matrix of code C_{i} for $i=1,2$. Find a generator matrix for C_{3} in terms of G_{1} and G_{2}.
12. [5 points] Let C be an (n, k) binary linear block code having minimum distance $d_{\text {min }}$ and weight enumerator $A(z)$. Let \mathbf{G} be a generator matrix of C. Consider the length $3 n$ code C_{1} with generator matrix $\mathbf{G}_{1}=\left[\begin{array}{lll}\mathbf{G} & \mathbf{G} & \mathbf{G}\end{array}\right]$. Answer the following in terms of the parameters of C. Explain your answers.
(a) What is the dimension of C_{1} ?
(b) What is the minimum distance of C_{1} ?
(c) What is the weight enumerator of C_{1} ?
13. [5 points] Construct the standard array for a binary linear block code with the following generator matrix if it is to be used over a binary symmetric channel with crossover probability $p<\frac{1}{2}$.

$$
G=\left[\begin{array}{llllll}
0 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Construct the syndrome-error pattern lookup table for this code, i.e. a one-to-one mapping between the set of syndromes and set of correctable error patterns.
14. [5 points] Let C be a linear block code and C^{\perp} be its dual code. A code is said to be self-dual if $C=C^{\perp}$. Prove that a linear self-dual code has even length n and dimension $\frac{n}{2}$.
15. [5 points] Let C be a linear block code and C^{\perp} be its dual code. A code is said to be self-orthogonal if $C \subseteq C^{\perp}$.
(a) Prove that each codeword in a binary self-orthogonal code C has even weight and C^{\perp} contains the all-ones codeword $1=111 \cdots 1$.
(b) Prove that if every codeword of a binary linear block code C has weight divisible by 4 , then C is self-orthogonal.
16. [5 points] Find the smallest binary linear block code which contains the following codewords $\{100101,110010,010111,001011\}$. Find a systematic ${ }^{1}$ generator matrix for this code. What is the minimum distance of this code?

[^0]17. [5 points] Let C_{1} and C_{2} be two linear block codes of same length n.
(a) Show that $C_{1} \cap C_{2}$ is a linear code.
(b) Show that $C_{1} \cup C_{2}$ is a linear code if and only if either $C_{1} \subseteq C_{2}$ or $C_{2} \subseteq C_{1}$.
18. [5 points] Let C_{1} and C_{2} be binary linear block codes of the same length n. If $C_{1} \subseteq C_{2}$, show that $C_{2}^{\perp} \subseteq C_{1}^{\perp}$.
19. [5 points] Let C be an (n, k) binary linear block code with $k \geq 1$. Let $\mathbf{v} \in \mathbb{F}_{2}^{n}$ be a vector not in the dual code of C, i.e. $\mathbf{v} \notin C^{\perp}$. Show that \mathbf{v} is orthogonal to exactly half of the codewords in C.
20. [5 points] Show that in every binary linear block code either all the codewords have even Hamming weight or exactly half of the codewords have even Hamming weight. Hint: $\sum_{i=1}^{n} v_{i}=0$ for a codeword \mathbf{v} of even weight or equivalently $\mathbf{v} \cdot \mathbf{1}^{T}=0$ where 1 is the $1 \times n$ vector containing all ones.
21. [5 points] Show that in a binary linear block code, either all the codewords begin with 0 , or exactly half begin with 0 and half with 1 .
22. [5 points] Let C_{1} be an $\left(n, k_{1}\right)$ binary linear block code with minimum distance d_{1} and let C_{2} be an $\left(n, k_{2}\right)$ binary linear block code with minimum distance d_{2}. Consider the following set of $2 n$-tuples
$$
C=\left\{(\mathbf{u}, \mathbf{u}+\mathbf{v}) \mid \mathbf{u} \in C_{1}, \mathbf{v} \in C_{2}\right\} .
$$

Prove that the set C is a binary linear block code with dimension $k=k_{1}+k_{2}$ and minimum distance $d_{\text {min }}=\min \left\{2 d_{1}, d_{2}\right\}$.
23. [5 points] Show that a binary block code can simultaneously correct $1,2,3, \ldots, a$ errors and detect $a+1, a+2, \ldots, b$ errors if and only if it has minimum distance at least $a+b+1$. Note: If a code is used for only error detection, it can detect upto $d_{\text {min }}-1$ errors. If it is used for only error correction, it can correct upto $\left\lceil\frac{d_{\text {min }}-1}{2}\right\rceil$ errors.

[^0]: ${ }^{1}$ A systematic generator matrix for an (n, k) linear block code has the $k \times k$ identity matrix in its first k columns.

