- 1. [3 points] Let C be a linear block code and C^{\perp} be its dual code. A code is said to be *self-orthogonal* if $C \subseteq C^{\perp}$.
 - (a) Prove that each codeword in a binary self-orthogonal code C has even weight and C^{\perp} contains the all-ones codeword $\mathbf{1} = 111 \cdots 1$.
 - (b) Prove that if every codeword of a binary linear block code C has weight divisible by 4, then C is self-orthogonal.
- 2. [3 points] Let **H** be the parity check matrix of a Hamming code of length $n = 2^m 1$. Consider a matrix **H'** obtained by removing all columns of even weight from **H**. Let *C* be the code whose parity check matrix is **H'**?
 - (a) Find the length and dimension of C.
 - (b) Show that C can correct all single bit errors and detect all two-bit errors.
- 3. [3 points] Find the generator matrices corresponding to the following Reed-Muller codes.
 - (a) RM(1,3)
 - (b) RM(2,3)
 - (c) RM(1,4)
- 4. [3 points] Let C_1 and C_2 be two cyclic codes of same length n with generator polynomials $g_1(X)$ and $g_2(X)$ respectively. Show that $C_1 \cap C_2$ is a cyclic code. What is its generator polynomial?
- 5. [3 points] For an (n, k) binary cyclic code, show the following.
 - (a) The fraction of undetectable bursts of length n k + 1 is $2^{-(n-k-1)}$.
 - (b) For m > n k + 1, the fraction of undetectable bursts of length m is $2^{-(n-k)}$.
- 6. [5 points] Let C be a binary cyclic code of length n with generator polynomial g(X). Let r(X) be a received polynomial and let $r^{(1)}(X)$ be the polynomial corresponding to a single cyclic shift of r(X). Let s(X) be the syndrome corresponding to r(X). Find the syndrome of $r^{(1)}(X)$ as a function of s(X) and g(X). Explain your answer.
- 7. [5 points] Show that the binary cyclic code of length 15 having generator polynomial $g(X) = X^4 + X^3 + 1$ is a Hamming code.
- 8. [5 points] Show that the binary linear block code with the following generator matrix is a cyclic code.

0 0 0 0 0 1 1 0 0 $0 \ \ 0 \ \ 0 \ \ 0 \ \ 0 \ \ 0 \ \ 0$ $0 \ 0 \ 1$ 0 0 0 0 0 0 0 0 0 1 1 0