EE 605: Error Correcting Codes
 Instructor: Saravanan Vijayakumaran
 Indian Institute of Technology Bombay

1. [3 points] Let C be a linear block code and C^{\perp} be its dual code. A code is said to be self-orthogonal if $C \subseteq C^{\perp}$.
(a) Prove that each codeword in a binary self-orthogonal code C has even weight and C^{\perp} contains the all-ones codeword $\mathbf{1}=111 \cdots 1$.
(b) Prove that if every codeword of a binary linear block code C has weight divisible by 4, then C is self-orthogonal.
2. [3 points] Let \mathbf{H} be the parity check matrix of a Hamming code of length $n=2^{m}-1$. Consider a matrix \mathbf{H}^{\prime} obtained by removing all columns of even weight from \mathbf{H}. Let C be the code whose parity check matrix is \mathbf{H}^{\prime} ?
(a) Find the length and dimension of C.
(b) Show that C can correct all single bit errors and detect all two-bit errors.
3. [3 points] Find the generator matrices corresponding to the following Reed-Muller codes.
(a) $\mathrm{RM}(1,3)$
(b) $\mathrm{RM}(2,3)$
(c) $\mathrm{RM}(1,4)$
4. [3 points] Let C_{1} and C_{2} be two cyclic codes of same length n with generator polynomials $g_{1}(X)$ and $g_{2}(X)$ respectively. Show that $C_{1} \cap C_{2}$ is a cyclic code. What is its generator polynomial?
5. [3 points] For an (n, k) binary cyclic code, show the following.
(a) The fraction of undetectable bursts of length $n-k+1$ is $2^{-(n-k-1)}$.
(b) For $m>n-k+1$, the fraction of undetectable bursts of length m is $2^{-(n-k)}$.
6. [5 points] Let C be a binary cyclic code of length n with generator polynomial $g(X)$. Let $r(X)$ be a received polynomial and let $r^{(1)}(X)$ be the polynomial corresponding to a single cyclic shift of $r(X)$. Let $s(X)$ be the syndrome corresponding to $r(X)$. Find the syndrome of $r^{(1)}(X)$ as a function of $s(X)$ and $g(X)$. Explain your answer.
7. [5 points] Show that the binary cyclic code of length 15 having generator polynomial $g(X)=$ $X^{4}+X^{3}+1$ is a Hamming code.
8. [5 points] Show that the binary linear block code with the following generator matrix is a cyclic code.

$$
\left[\begin{array}{lllllllllllllll}
1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0
\end{array}\right]
$$

