1. (5 points) Prove that for a binary block code with minimum distance $d_{\text {min }}$, the minimum distance decoder can correct upto $\left\lfloor\frac{d_{\min }-1}{2}\right\rfloor$ errors.
2. (5 points) Construct a standard array for a binary linear block code with the following generator matrix if it is to be used over a binary symmetric channel with crossover probability $p<\frac{1}{2}$.

$$
G=\left[\begin{array}{llllll}
0 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Construct the syndrome-error pattern lookup table for this code, i.e. a one-to-one mapping between the set of syndromes and set of correctable error patterns.
3. (5 points) Let C be an (n, k) binary linear block code with $k \geq 1$. Let $\mathbf{v} \in \mathbb{F}_{2}^{n}$ be a vector not in the dual code of C, i.e. $\mathbf{v} \notin C^{\perp}$. Show that \mathbf{v} is orthogonal to exactly half of the codewords in C.
4. (5 points) Consider a binary linear code with generator matrix

$$
G=\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1
\end{array}\right]
$$

(a) Find the weight distribution of this code.
(b) Find a parity check matrix for this code.
5. (5 points) Let $f: \mathbb{F}_{2}^{n} \mapsto \mathbb{R}$ be a function. The Hadamard transform of f is given by

$$
\hat{f}(\mathbf{u})=\sum_{\mathbf{v} \in \mathbb{F}_{2}^{n}}(-1)^{\mathbf{u} \cdot \mathbf{v}} f(\mathbf{v})
$$

where $\mathbf{u} \in \mathbb{F}_{2}^{n}$ and $\mathbf{u} \cdot \mathbf{v}=\mathbf{u v}^{T}$. Let C be an (n, k) binary linear block code. Prove that

$$
\sum_{\mathbf{u} \in C^{\perp}} f(\mathbf{u})=\frac{1}{2^{k}} \sum_{\mathbf{u} \in C} \hat{f}(\mathbf{u}) .
$$

