1. (5 points) State and prove Lagrange's theorem.
2. (5 points) Prove that the a cyclic group of order n has $\phi(n)$ generators where $\phi(n)$ is the Euler totient function. For argument n, this function gives the number of positive integers less than or equal to n that are relatively prime to n.
3. (5 points) Using any of the results proved in class, show that the following fields are isomorphic. You have to explicitly specify the bijection and prove that it satisfies the required properties.

$$
\begin{aligned}
& \text { - } F=\left\{a_{0}+a_{1} y+a_{2} y^{2} \mid a_{i} \in \mathbb{F}_{2}\right\} \text { under }+ \text { and } * \text { modulo } y^{3}+y+1 \\
& \text { - } G=\left\{a_{0}+a_{1} y+a_{2} y^{2} \mid a_{i} \in \mathbb{F}_{2}\right\} \text { under }+ \text { and } * \text { modulo } y^{3}+y^{2}+1
\end{aligned}
$$

4. (5 points) Let F_{q} be a field with p^{m} elements where p is a prime and m is a positive integer. A degree m irreducible polynomial in $\mathbb{F}_{p}[x]$ is said to be primitive if the smallest value of N for which it divides $x^{N}-1$ is $p^{m}-1$. Show that the minimal polynomial of a primitive element in F_{q} is a primitive polynomial.
5. (5 points) Find all the minimal polynomials of the field of 27 elements.
