BCH Codes

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering
Indian Institute of Technology Bombay

October 13, 2015

BCH Codes

- Discovered by Hocquenghem in 1959 and independently by Bose and Chaudhari in 1960
- Cyclic structure proved by Peterson in 1960
- Decoding algorithms proposed/refined by Peterson, Gorenstein and Zierler, Chien, Forney, Berlekamp, Massey...
- We will discuss a subclass of BCH codes - binary primitive BCH codes

Binary Primitive BCH Codes

For positive integers $m \geq 3$ and $t<2^{m-1}$, there exists an (n, k) BCH code with parameters

- $n=2^{m}-1$
- $n-k \leq m t$
- $d_{\text {min }} \geq 2 t+1$

Definition

Let α be a primitive element in $F_{2^{m}}$. The generator polynomial $g(x)$ of the t-error-correcting BCH code of length $2^{m}-1$ is the least degree polynomial in $\mathbb{F}_{2}[x]$ that has

$$
\alpha, \alpha^{2}, \alpha^{3}, \ldots, \alpha^{2 t}
$$

as its roots.
Let $\varphi_{i}(x)$ be the minimal polynomial of α^{i}. Then $g(x)$ is the LCM of $\varphi_{1}(x), \varphi_{2}(x), \ldots, \varphi_{2 t}(x)$.

Binary Primitive BCH Code of Length 7

- $m=3$ and $t<2^{3-1}=4$
- Let α be a primitive element of F_{8}
- For $t=1, g(x)$ is the least degree polynomial in $\mathbb{F}_{2}[x]$ that has as its roots α, α^{2}
- α is a root of $x^{8}+x$

$$
x^{8}+x=x(x+1)\left(x^{3}+x+1\right)\left(x^{3}+x^{2}+1\right)
$$

- Let α be a root of $x^{3}+x+1$
- The other roots of $x^{3}+x+1$ are α^{2}, α^{4}
- For $t=1, g(x)=x^{3}+x+1$
- For $t=2, g(x)$ is the least degree polynomial in $\mathbb{F}_{2}[x]$ that has as its roots $\alpha, \alpha^{2}, \alpha^{3}, \alpha^{4}$
- The roots of $x^{3}+x^{2}+1$ are $\alpha^{3}, \alpha^{5}, \alpha^{6}$
- For $t=2, g(x)=\left(x^{3}+x+1\right)\left(x^{3}+x^{2}+1\right)$
- For $t=3, g(x)$ is the least degree polynomial in $\mathbb{F}_{2}[x]$ that has as its roots $\alpha, \alpha^{2}, \alpha^{3}, \alpha^{4}, \alpha^{5}, \alpha^{6} \Longrightarrow g(x)=\left(x^{3}+x+1\right)\left(x^{3}+x^{2}+1\right)$

Binary Primitive BCH Code of Length 7

For a BCH code with parameters m and t, we have

- $n-k \leq m t$
- $d_{\text {min }} \geq 2 t+1$

t	$g(x)$	$n-k$	$m t$	$d_{\text {min }}$	$2 t+1$
1	$x^{3}+x+1$	3	3	3	3
2	$\left(x^{3}+x+1\right)\left(x^{3}+x^{2}+1\right)$	6	6	7	5
3	$\left(x^{3}+x+1\right)\left(x^{3}+x^{2}+1\right)$	6	9	7	7

Definition

A degree m irreducible polynomial in $\mathbb{F}_{2}[x]$ is said to be primitive if the smallest value of N for which it divides $x^{N}+1$ is $2^{m}-1$

Lemma
The minimal polynomial of a primitive element is a primitive polynomial.

Single Error Correcting BCH Codes are Hamming Codes

We will prove this for $m=3$. The proof of the general case is similar.

Proof.

- Consider a BCH code with parameter $m=3$ and $t=1$
- Let α be a primitive element of F_{8} and a root of $x^{3}+x+1$
- The generator polynomial $g(x)=x^{3}+x+1$
- The code has length 7 and dimension 4
- A polynomial $v(x)=v_{0}+v_{1} x+v_{2} x^{2}+\cdots+v_{6} x^{6}$ is a code polynomial $\Longleftrightarrow v(x)$ is a multiple of $g(x) \Longleftrightarrow \alpha$ is a root of $v(x) \Longleftrightarrow v(\alpha)=0$
$v(\alpha)=0 \Longleftrightarrow v_{0}+v_{1} \alpha+v_{2} \alpha^{2}+v_{3} \alpha^{3}+\cdots+v_{6} \alpha^{6}=0$

Single Error Correcting BCH Codes are Hamming Codes

Proof continued.

$$
\begin{aligned}
& \left.\right) \\
& v(\alpha)=0 \Longleftrightarrow v_{0}+v_{1} \alpha+v_{2} \alpha^{2}+v_{3} \alpha^{3}+\cdots+v_{6} \alpha^{6}=0 \\
& \Longleftrightarrow\left[\begin{array}{llll}
1 & \alpha & \cdots & \alpha^{6}
\end{array}\right]\left[\begin{array}{c}
v_{0} \\
v_{1} \\
\vdots \\
v_{6}
\end{array}\right]=0 \Longleftrightarrow\left[\begin{array}{ccccccc}
1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{c}
v_{0} \\
v_{1} \\
\vdots \\
v_{6}
\end{array}\right]=\mathbf{0}
\end{aligned}
$$

Degree of Generator Polynomial

Theorem

For a binary primitive $B C H$ code with parameters m, t and generator polynomial $g(x)$, deg $[g(x)] \leq m t$.
Proof.

- $g(x)=\operatorname{LCM}\left\{\varphi_{1}(x), \varphi_{2}(x), \varphi_{3}(x), \ldots, \varphi_{2 t}(x)\right\}$
- If i is an even integer, then $i=i^{\prime} 2^{a}$ where i^{\prime} is odd
- $\alpha^{i}=\left(\alpha^{i^{\prime}}\right)^{2^{a}} \Longrightarrow \alpha^{i}$ and $\alpha^{i^{\prime}}$ have the same minimal polynomial
- Every even power of α has the same minimal polynomial as some previous odd power of α

$$
g(x)=\operatorname{LCM}\left\{\varphi_{1}(x), \varphi_{3}(x), \varphi_{5}(x), \ldots, \varphi_{2 t-1}(x)\right\}
$$

- Since deg $\left(\varphi_{i}\right)$ divides m, we have $n-k \leq m t$

Lower Bound on Minimum Distance

- We want to show that if the generator polynomial has roots $\alpha, \alpha^{2}, \cdots, \alpha^{2 t}$ then $d_{\text {min }} \geq 2 t+1$
- Suppose there exists a nonzero codeword $\mathbf{v}=\left(v_{0}, v_{1}, \ldots, v_{n-1}\right)$ of weight $\delta \leq 2 t$
- The corresponding code polynomial satisfies $\mathbf{v}\left(\alpha^{i}\right)=0$ for $i=1,2,3, \ldots, 2 t$

$$
\begin{aligned}
v_{0}+v_{1} \alpha+v_{2} \alpha^{2}+\cdots+v_{n-1} \alpha^{n-1} & =0 \\
v_{0}+v_{1} \alpha^{2}+v_{2} \alpha^{4}+\cdots+v_{n-1} \alpha^{2(n-1)} & =0 \\
& \vdots \\
v_{0}+v_{1} \alpha^{2 t}+v_{2} \alpha^{4 t}+\cdots+v_{n-1} \alpha^{2 t(n-1)} & =0
\end{aligned}
$$

- Let $j_{1}, j_{2}, \ldots, j_{\delta}$ be the nonzero locations in the codeword

$$
v_{j_{1}}\left(\alpha^{i}\right)^{j_{1}}+v_{j_{2}}\left(\alpha^{i}\right)^{j_{2}}+\cdots+v_{j_{\delta}}\left(\alpha^{i}\right)^{j_{\delta}}=0
$$

for $i=1,2, \ldots, 2 t$

Lower Bound on Minimum Distance

$$
\begin{gathered}
{\left[\begin{array}{llll}
v_{j_{1}} & v_{j_{2}} & \cdots & v_{j_{\delta}}
\end{array}\right]\left[\begin{array}{cccc}
\alpha^{j_{1}} & \left(\alpha^{2}\right)^{j_{1}} & \cdots & \left(\alpha^{2 t}\right)^{j_{1}} \\
\alpha^{j_{2}} & \left(\alpha^{2}\right)^{j_{2}} & \cdots & \left(\alpha^{2 t}\right)^{j_{2}} \\
\alpha^{j_{3}} & \left(\alpha^{2}\right)^{j_{3}} & \cdots & \left(\alpha^{2 t}\right)^{j_{3}} \\
\vdots & \vdots & & \vdots \\
\alpha^{j_{\delta}} & \left(\alpha^{2}\right)^{j_{\delta}} & \cdots & \left(\alpha^{2 t}\right)^{j_{\delta}}
\end{array}\right]=\mathbf{0}} \\
\Longrightarrow\left[\begin{array}{llll}
1 & 1 & \cdots & 1
\end{array}\right]\left[\begin{array}{cccc}
\alpha^{j_{1}} & \left(\alpha^{j_{1}}\right)^{2} & \cdots & \left(\alpha^{j_{1}}\right)^{2 t} \\
\alpha^{j_{2}} & \left(\alpha^{j_{2}}\right)^{2} & \cdots & \left(\alpha^{j_{2}}\right)^{2 t} \\
\alpha^{j_{3}} & \left(\alpha^{j_{3}}\right)^{2} & \cdots & \left(\alpha^{j_{3}}\right)^{2 t} \\
\vdots & \vdots & & \vdots \\
\alpha^{j_{\delta}} & \left(\alpha^{j_{\delta}}\right)^{2} & \cdots & \left(\alpha^{j_{\delta}}\right)^{2 t}
\end{array}\right]=\mathbf{0}
\end{gathered}
$$

Lower Bound on Minimum Distance

$$
\begin{gathered}
\Longrightarrow\left[\begin{array}{llll}
1 & 1 & \cdots & 1
\end{array}\right]\left[\begin{array}{cccc}
\alpha^{j_{1}} & \left(\alpha^{j_{1}}\right)^{2} & \cdots & \left(\alpha^{j_{1}}\right)^{\delta} \\
\alpha^{j_{2}} & \left(\alpha^{j_{2}}\right)^{2} & \cdots & \left(\alpha^{j_{2}}\right)^{\delta} \\
\alpha^{j_{3}} & \left(\alpha^{j_{3}}\right)^{2} & \cdots & \left(\alpha^{j_{3}}\right)^{\delta} \\
\vdots & \vdots & & \vdots \\
\alpha^{j_{\delta}} & \left(\alpha^{j_{\delta}}\right)^{2} & \cdots & \left(\alpha^{j_{\delta}}\right)^{\delta}
\end{array}\right]=\mathbf{0} \\
\\
\Longrightarrow\left|\begin{array}{cccc}
\alpha^{j_{1}} & \left(\alpha^{j_{1}}\right)^{2} & \cdots & \left(\alpha^{j_{1}}\right)^{\delta} \\
\alpha^{j_{2}} & \left(\alpha^{j^{2}}\right)^{2} & \cdots & \left(\alpha^{j_{2}}\right)^{\delta} \\
\alpha^{j_{3}} & \left(\alpha^{j_{3}}\right)^{2} & \cdots & \left(\alpha^{j_{3}}\right)^{\delta} \\
\vdots & \vdots & & \vdots \\
\alpha^{j_{\delta}} & \left(\alpha^{j_{\delta}}\right)^{2} & \cdots & \left(\alpha^{j_{\delta}}\right)^{\delta}
\end{array}\right|=0
\end{gathered}
$$

Lower Bound on Minimum Distance

$$
\Longrightarrow \alpha^{\left(j_{1}+\cdots+j_{\delta}\right)}\left|\begin{array}{cccc}
1 & \alpha^{j_{1}} & \cdots & \alpha^{(\delta-1) j_{1}} \\
1 & \alpha^{j_{2}} & \cdots & \alpha^{(\delta-1) j_{2}} \\
1 & \alpha^{j_{3}} & \cdots & \alpha^{(\delta-1) j_{3}} \\
\vdots & \vdots & & \vdots \\
1 & \alpha^{j_{\delta}} & \cdots & \alpha^{(\delta-1) j_{\delta}}
\end{array}\right|=0
$$

- $\alpha^{j_{1}+\cdots+j_{\delta}} \neq 0$ since α is a nonzero field element
- The determinant is a Vandermonde determinant which is not zero
- This contradicts our assumption that a nonzero codeword of weight $\delta \leq 2 t$ exists

Questions? Takeaways?

