Linear Block Codes

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

July 24, 2015

Binary Block Codes

Binary Block Code

Let \mathbb{F}_2 be the set $\{0,1\}.$

Definition

An (n, k) binary block code is a subset of \mathbb{F}_2^n containing 2^k elements

Example

 $n = 3, k = 1, C = \{000, 111\}$

Example

 $n \ge 2$, C = Set of vectors of even Hamming weight in \mathbb{F}_2^n , k = n - 1

 $n = 3, k = 2, C = \{000, 011, 101, 110\}$

This code is called the single parity check code

Encoding Binary Block Codes

The encoder maps *k*-bit information blocks to codewords.

Definition

An encoder for an (n, k) binary block code *C* is an injective function from \mathbb{F}_2^k to *C*

```
Example (3-Repetition Code)

0 \rightarrow 000, 1 \rightarrow 111

or

1 \rightarrow 000, 0 \rightarrow 111
```

Decoding Binary Block Codes

The decoder maps *n*-bit received blocks to codewords

Definition

A decoder for an (n, k) binary block code is a function from \mathbb{F}_2^n to C

Example (3-Repetition Code)

 $n = 3, C = \{000, 111\}$

000 ightarrow 000	111 ightarrow 111
$001 \rightarrow 000$	$110 \rightarrow 111$
$010 \rightarrow 000$	101 ightarrow 111
100 ightarrow 000	011 ightarrow 111

Since encoding is injective, information bits can be recovered as $000 \rightarrow 0, 111 \rightarrow 1$

Optimal Decoder for Binary Block Codes

- Optimality criterion: Maximum probability of correct decision
- Let $\mathbf{x} \in C$ be the transmitted codeword
- Let $\mathbf{y} \in \mathbb{F}_2^n$ be the received vector
- Maximum a posteriori (MAP) decoder is optimal

 $\hat{\mathbf{x}}_{\textit{MAP}} = \operatorname{argmax}_{\mathbf{x} \in \textit{C}} \Pr(\mathbf{x} | \mathbf{y})$

 If all codewords are equally likely to be transmitted, then maximum likelihood (ML) decoder is optimal

$$\hat{\mathbf{x}}_{ML} = \operatorname{argmax}_{\mathbf{x} \in C} \Pr(\mathbf{y} | \mathbf{x})$$

 Over a BSC with p < ¹/₂, the minimum distance decoder is optimal if the codewords are equally likely

$$\hat{\mathbf{x}} = \text{argmin}_{\mathbf{x} \in \mathcal{C}} d(\mathbf{x}, \mathbf{y})$$

Error Correction Capability of Binary Block Codes

Definition

The minimum distance of a block code C is defined as

$$d_{min} = \min_{\mathbf{x}, \mathbf{y} \in C, \mathbf{x} \neq \mathbf{y}} d(\mathbf{x}, \mathbf{y})$$

Example (3-Repetition Code)

$$C = \{000, 111\}, d_{min} = 3$$

Example (Single Parity Check Code)

C = Set of vectors of even weight in \mathbb{F}_2^n , $d_{min} = 2$

Theorem

For a binary block code with minimum distance d_{min} , the minimum distance decoder can correct upto $\lfloor \frac{d_{min}-1}{2} \rfloor$ errors.

Complexity of Encoding and Decoding

Encoder

- Map from \mathbb{F}_2^k to C
- Worst case storage requirement = O(n2^k)

Decoder

- Map from \mathbb{F}_2^n to C
- $\hat{\mathbf{x}}_{ML} = \operatorname{argmax}_{\mathbf{x} \in C} \Pr(\mathbf{y} | \mathbf{x})$
- Worst case storage requirement = O(k2ⁿ)
- Time complexity = $O(n2^k)$

Need more structure to reduce complexity

Binary Linear Block Codes

Vector Spaces over \mathbb{F}_2

- Define the following operations on \mathbb{F}_2
- Addition +
 - 0+0=0
 - 0 + 1 = 1
 - 1 + 0 = 1
 - 1 + 1 = 0
- Multiplication ×
 - 0 × 0 = 0
 - 0 × 1 = 0
 - 1 × 0 = 0
 - 1 × 1 = 1
- \mathbb{F}_2 is also represented as GF(2)

Fact

The set \mathbb{F}_2^n is a vector space over \mathbb{F}_2

Binary Linear Block Code

Definition

An (n, k) binary linear block code is a k-dimensional subspace of \mathbb{F}_2^n

Theorem

Let *S* be a nonempty subset of \mathbb{F}_2^n . Then *S* is a subspace of \mathbb{F}_2^n if $\mathbf{u} + \mathbf{v} \in S$ for any two \mathbf{u} and \mathbf{v} in *S*.

Example (3-Repetition Code)

Example (Single Parity Check Code)

C = Set of vectors of even weight in \mathbb{F}_2^n wt($\mathbf{u} + \mathbf{v}$) = wt(\mathbf{u}) + wt(\mathbf{v}) - 2 wt($\mathbf{u} \cap \mathbf{v}$)

Encoding Binary Linear Block Codes

Definition

A generator matrix for a *k*-dimensional binary linear block code *C* is a $k \times n$ matrix **G** whose rows form a basis for *C*.

Linear Block Code Encoder

Let **u** be a $1 \times k$ binary vector of information bits. The corresponding codeword is

$$\mathbf{v} = \mathbf{u}\mathbf{G}$$

Example (3-Repetition Code) $\mathbf{G} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$

Encoding Binary Linear Block Codes

Example (Single Parity Check Code) $n = 3, k = 2, C = \{000, 011, 101, 110\}$

$$\mathbf{G} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$
$$\begin{bmatrix} 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

Encoding Complexity of Binary Linear Block Codes

- Need to store G
- Storage requirement = $O(nk) \ll O(n2^k)$
- Time complexity = O(nk)
- Complexity can be reduced further by imposing more structure in addition to linearity
- Decoding complexity? What is the optimal decoder?

Decoding Binary Linear Block Codes

• Codewords are equally likely \Rightarrow ML decoder is optimal

$$\hat{\mathbf{x}}_{ML} = \operatorname{argmax}_{\mathbf{x} \in C} \Pr(\mathbf{y} | \mathbf{x})$$

• Equally likely codewords and channel is $\mathsf{BSC} \Rightarrow \mathsf{Minimum}$ distance decoder is optimal

$$\hat{\mathbf{x}}_{ML} = \operatorname{argmin}_{\mathbf{x} \in C} d(\mathbf{x}, \mathbf{y})$$

• To exploit linear structure to reduce decoding complexity, we need to study the dual code

Inner Product of Vectors in \mathbb{F}_2^n

Definition

Let $\mathbf{u} = (u_1, u_2, \dots, u_n)$ and $\mathbf{v} = (v_1, v_2, \dots, v_n)$ belong to \mathbb{F}_2^n . The inner product of \mathbf{u} and \mathbf{v} is given by

$$\mathbf{u}\cdot\mathbf{v}=\sum_{i=1}^n u_iv_i$$

 $\mathbf{u} \cdot \mathbf{v} = \mathbf{0} \Rightarrow \mathbf{u}$ and \mathbf{v} are orthogonal.

Examples

•
$$(1 \ 0 \ 0) \cdot (0 \ 1 \ 1) = 1 \cdot 0 + 0 \cdot 1 + 0 \cdot 1 = 0$$

• $(1 \ 1 \ 0) \cdot (0 \ 1 \ 1) = 1 \cdot 0 + 1 \cdot 1 + 0 \cdot 1 = 1$

•
$$(1 \ 1 \ 1) \cdot (0 \ 1 \ 1) = 1 \cdot 0 + 1 \cdot 1 + 1 \cdot 1 = 0$$

•
$$\begin{pmatrix} 0 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 & 1 \end{pmatrix} = 0 \cdot 0 + 1 \cdot 1 + 1 \cdot 1 = 0$$

Nonzero vectors can be self-orthogonal

Dual Code of a Linear Block Code

Definition

Let *C* be an (n, k) binary linear block code. Let C^{\perp} be the set of vectors in \mathbb{F}_2^n which are orthogonal to all the codewords in *C*.

$$\mathcal{C}^{\perp} = \left\{ \mathbf{u} \in \mathbb{F}_2^n \middle| \ \mathbf{u} \cdot \mathbf{v} = 0 \ \text{for all} \ \mathbf{v} \in \mathcal{C}
ight\}$$

 C^{\perp} is a linear block code and is called the dual code of *C*. Example (3-Repetition Code) $C = \{000, 111\}, C^{\perp} = ?$

$$\begin{array}{rrrr} 000 \cdot 111 = 0 & 111 \cdot 111 = 1 \\ 001 \cdot 111 = 1 & 110 \cdot 111 = 0 \\ 010 \cdot 111 = 1 & 101 \cdot 111 = 0 \\ 100 \cdot 111 = 1 & 011 \cdot 111 = 0 \end{array}$$

 $C^{\perp} = \{000, 011, 101, 110\}$ = Single Parity Check Code

Dimension of the Dual Code

Example (3-Repetition Code and SPC Code) $C = \{000, 111\}, \dim C = 1$ $C^{\perp} = \{000, 011, 101, 110\}, \dim C^{\perp} = 2$ $\dim C + \dim C^{\perp} = 1 + 2 = 3$

Theorem

 $\dim C + \dim C^{\perp} = n$

Corollary

C is an (n, k) binary linear block code $\Rightarrow C^{\perp}$ is an (n, n - k) binary linear block code

Parity Check Matrix of a Code

Definition

Let *C* be an (n, k) binary linear block code and let C^{\perp} be its dual code. A generator matrix **H** for C^{\perp} is called a parity check matrix for *C*.

Example (3-Repetition Code)

$$C = \{000, 111\}$$

 $C^{\perp} = \{000, 011, 101, 110\}$

A generator matrix of C^{\perp} is $\mathbf{H} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$

H is a parity check matrix of C.

Parity Check Matrix Completely Describes a Code

Theorem

Let C be a linear block code with parity check matrix H. Then

$$\mathbf{v} \in \boldsymbol{C} \iff \mathbf{v} \cdot \mathbf{H}^{\mathcal{T}} = \mathbf{0}$$

Example (3-Repetition Code)

$$C = \{000, 111\}, \mathbf{H} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

Forward direction: $\mathbf{v} \in C \Rightarrow \mathbf{v} \cdot \mathbf{H}^T = \mathbf{0}$

$$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \end{bmatrix}$$

Parity Check Matrix Completely Describes a Code

Theorem

Let C be a linear block code with parity check matrix H. Then

$$\mathbf{v} \in \boldsymbol{C} \iff \mathbf{v} \cdot \mathbf{H}^{T} = \mathbf{0}$$

Example (3-Repetition Code)

$$C = \{000, 111\}, \mathbf{H} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

Reverse direction: $\mathbf{v} \in C \Leftarrow \mathbf{v} \cdot \mathbf{H}^T = \mathbf{0}$
 $\mathbf{v} \cdot \mathbf{H}^T = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} v_1 + v_3 & v_2 + v_3 \end{bmatrix}$

$$\mathbf{v} \cdot \mathbf{H}^T = \mathbf{0} \quad \Rightarrow \quad \mathbf{v}_1 + \mathbf{v}_3 = \mathbf{0}, \, \mathbf{v}_2 + \mathbf{v}_3 = \mathbf{0} \\ \Rightarrow \quad \mathbf{v}_1 = \mathbf{v}_3, \, \mathbf{v}_2 = \mathbf{v}_3 \Rightarrow \mathbf{v}_1 = \mathbf{v}_2 = \mathbf{v}_3$$

Decoding Binary Linear Block Codes

• Let a codeword **x** be sent through a BSC to get **y**,

 $\mathbf{y} = \mathbf{x} + \mathbf{e}$

where e is the error vector

 The probability of observing y given x was transmitted is given by

$$Pr(\mathbf{y}|\mathbf{x}) = p^{d(\mathbf{x},\mathbf{y})}(1-p)^{n-d(\mathbf{x},\mathbf{y})}$$
$$= p^{wt(\mathbf{e})}(1-p)^{n-wt(\mathbf{e})}$$
$$= (1-p)^n \left(\frac{p}{1-p}\right)^{wt(\mathbf{e})}$$

• If $p < \frac{1}{2}$, lower weight error vectors are more likely

Decoding Binary Linear Block Codes

Optimal decoder is given by

$$\hat{\mathbf{x}}_{ML} = \operatorname{argmin}_{\mathbf{x} \in C} d(\mathbf{x}, \mathbf{y})$$

= $\mathbf{y} + \hat{\mathbf{e}}_{ML}$

where $\hat{\mathbf{e}}_{ML}$ = Most likely error vector such that $\mathbf{y} + \mathbf{e} \in C$.

- $\mathbf{y} + \mathbf{e} \in C \iff (\mathbf{y} + \mathbf{e}) \cdot \mathbf{H}^T = \mathbf{0} \iff \mathbf{e} \cdot \mathbf{H}^T = \mathbf{y} \cdot \mathbf{H}^T$
- If $\mathbf{s} = \mathbf{y} \cdot \mathbf{H}^{T}$, the most likely error vector is

$$\hat{\mathbf{e}}_{\textit{ML}} = \operatorname*{argmin}_{\mathbf{e} \in \mathbb{F}_2^n, \mathbf{e} \cdot \mathbf{H}^{ au} = \mathbf{s}} \operatorname{wt}(\mathbf{e})$$

- Time complexity = $O(n2^k)$
- For each \mathbf{s} , the $\hat{\mathbf{e}}_{ML}$ can be precomputed and stored
- **s** is $1 \times n k$ binary vector \Rightarrow Storage required is $O(n2^{n-k})$

Summary

Complexity Comparison

General Block Codes

- Encoding = $O(n2^k)$
- Decoding = $O(n2^k)$

Linear Block Codes

- Encoding = O(nk)
- Decoding = $O(n2^k)$

Observations

- Linear structure in codes reduces encoding complexity
- Decoding complexity is still exponential
- Need for codes with low complexity decoders

Questions?