Minimal Polynomials

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

October 9, 2015

Factoring $x^q - x$ over a Field F_q and F_p

Example

 $\textit{F} = \{0,1,y,y+1\} \subset \mathbb{F}_2[y] \text{ under} + \text{ and } * \text{ modulo } y^2 + y + 1$

$$x^{4} - x = x(x-1)(x-y)(x-y-1)$$

= x(x+1)[x² - x(y+y+1) + y² + y]
= x(x+1)(x² + x + 1)

The prime subfield of *F* is \mathbb{F}_2 . $x, x + 1, x^2 + x + 1 \in \mathbb{F}_2[x]$ are called the minimal polynomials of *F*

Example

 $\mathbb{F}_5 = \{0, 1, 2, 3, 4\}$

$$x^{5} - x = x(x - 1)(x - 2)(x - 3)(x - 4)$$

The prime subfield of \mathbb{F}_5 is \mathbb{F}_5 .

 $x, x - 1, x - 2, x - 3, x - 4 \in \mathbb{F}_5[x]$ are called the minimal polynomials of \mathbb{F}_5

Factoring $x^q - x$ over a Field F_q and F_p

- Let F_q be a finite field with characteristic p
- F_q has a subfield isomorphic to \mathbb{F}_p
- Consider the polynomial $x^q x \in F_q[x]$
- Since the prime subfield contains ± 1 , $x^q x \in \mathbb{F}_p[x]$
- $x^q x$ factors into a product of prime polynomials $g_i(x) \in \mathbb{F}_p[x]$

$$x^q - x = \prod_i g_i(x)$$

The $g_i(x)$'s are called the minimal polynomials of F_q

• There are two factorizations of $x^q - x$

$$x^q - x = \prod_{eta \in F_q} (x - eta) = \prod_i g_i(x) \implies g_i(x) = \prod_{j=1}^{\deg g_i(x)} (x - eta_{ij})$$

 Each β ∈ F_q is a root of exactly one minimal polynomial of F_q, called the minimal polynomial of β

Properties of Minimal Polynomials (1)

Let F_q be a finite field with characteristic p. Let g(x) be the minimal polynomial of $\beta \in F_q$.

g(x) is the monic polynomial of least degree in $\mathbb{F}_{p}[x]$ such that $g(\beta) = 0$

Proof.

- Let h(x) ∈ 𝔽_p[x] be a monic polynomial of least degree such that h(β) = 0
- Dividing g(x) by h(x), we get g(x) = q(x)h(x) + r(x)where deg $r(x) < \deg h(x)$
- Since $r(x) \in \mathbb{F}_p[x]$ and $r(\beta) = 0$, by the least degree property of h(x) we have $r(x) = 0 \implies h(x)$ divides g(x)
- Since g(x) is irreducible, deg $h(x) = \deg g(x)$
- Since both h(x) and g(x) are monic, h(x) = g(x)

Properties of Minimal Polynomials (2)

Let F_q be a finite field with characteristic p. Let g(x) be the minimal polynomial of $\beta \in F_q$. For any $f(x) \in \mathbb{F}_p[x]$, $f(\beta) = 0 \iff g(x)$ divides f(x)Proof.

• (
$$\Leftarrow$$
) If $g(x)$ divides $f(x)$, then $f(x) = a(x)g(x)$
 $\implies f(\beta) = a(\beta)g(\beta) = 0$

• (\Longrightarrow) Suppose $f(x) \in \mathbb{F}_{\rho}[x]$ and $f(\beta) = 0$

- Dividing f(x) by g(x), we get f(x) = q(x)g(x) + r(x) where deg $r(x) < \deg g(x)$
- Since $r(x) \in \mathbb{F}_p[x]$ and $r(\beta) = 0$, by the least degree property of g(x) we have $r(x) = 0 \implies g(x)$ divides f(x)

Linearity of Taking pth Power

Let F_q be a finite field with characteristic p.

- For any $\alpha \in F_q$, $p\alpha = 0$
- For any $\alpha, \beta \in F_q$

$$(\alpha + \beta)^{p} = \sum_{j=0}^{p} {p \choose j} \alpha^{j} \beta^{p-j} = \alpha^{p} + \beta^{p}$$

- For any integer $n \ge 1$, $(\alpha + \beta)^{p^n} = \alpha^{p^n} + \beta^{p^n}$
- For any $g(x) = \sum_{i=0}^{m} g_i x^i \in F_q[x]$,

$$[g(x)]^{p^n} = (g_0 + g_1 x + g_2 x^2 + \dots + g_m x^m)^{p^n} \\ = g_0^{p^n} + g_1^{p^n} x^{p^n} + g_2^{p^n} x^{2p^n} + \dots + g_m^{p^n} x^{mp^n}$$

Test for Membership in $\mathbb{F}_{p}[x]$

Let F_q be a finite field with characteristic p. F_q has a subfield isomorphic to \mathbb{F}_p . For any $g(x) \in F_q[x]$

$$g^{
ho}(x)=g(x^{
ho})\iff g(x)\in\mathbb{F}_{
ho}[x]$$

Note that $g(x) \in \mathbb{F}_{\rho}[x] \iff$ all its coefficients g_i belong to \mathbb{F}_{ρ} Proof.

$$g^{p}(x) = \left(g_{0} + g_{1}x + g_{2}x^{2} + \dots + g_{m}x^{m}\right)^{p}$$

= $g_{0}^{p} + g_{1}^{p}x^{p} + g_{2}^{p}x^{2p} + \dots + g_{m}^{p}x^{mp}$
 $g(x^{p}) = g_{0} + g_{1}x^{p} + g_{2}x^{2p} + \dots + g_{m}x^{mp}$

$$g^{
ho}(x) = g(x^{
ho}) \iff g^{
ho}_i = g_i \iff g_i \in \mathbb{F}_{
ho}$$

Roots of Minimal Polynomials

Theorem

Let F_q be a finite field with characteristic p. Let g(x) be the minimal polynomial of $\beta \in F_q$. If $q = p^m$, then the roots of g(x) are of the form

$$\left\{\beta, \beta^{p}, \beta^{p^{2}}, \dots, \beta^{p^{n-1}}\right\}$$

where n is a divisor of m

Proof.

We need to show that

- There is an integer *n* such that β^{p^i} is a root of g(x) for $1 \le i < n$
- n divides m
- All the roots of g(x) are of this form

Roots of Minimal Polynomials

Proof continued.

- Since $g(x) \in \mathbb{F}_p[x], \, g^p(x) = g(x^p)$
- If β is a root of g(x), then β^p is also a root
- $\beta^{p^2}, \beta^{p^3}, \beta^{p^4}, \dots$, are all roots of g(x)
- Let *n* be the smallest integer such that $\beta^{p^n} = \beta$
- All elements in the set β , β^{p} , $\beta^{p^{2}}$, $\beta^{p^{3}}$, ..., $\beta^{p^{n-1}}$ are distinct
- If $\beta^{p^a} = \beta^{p^b}$ for some $0 \le a < b \le n-1$, then

$$\left(\beta^{p^{a}}\right)^{p^{n-b}} = \left(\beta^{p^{b}}\right)^{p^{n-b}} \implies \beta^{p^{n+a-b}} = \beta^{p^{n}} = \beta$$

• If *n* does not divide *m*, then m = an + r where 0 < r < n

$$\beta^{p^m} = \beta \implies \beta^{p^r} = \beta$$
 which is a contradiction

Roots of Minimal Polynomials

Proof continued.

- It remains to be shown that {β, β^p, β^{p²},..., β^{pⁿ⁻¹}} are the only roots of g(x)
- Let $h(x) = \prod_{i=0}^{n-1} (x \beta^{p^i})$
- $h(x) \in \mathbb{F}_p[x]$ since

$$h^{p}(x) = \prod_{i=0}^{n-1} (x - \beta^{p^{i}})^{p} = \prod_{i=0}^{n-1} (x^{p} - \beta^{p^{i+1}}) = \prod_{i=0}^{n-1} (x^{p} - \beta^{p^{i}}) = h(x^{p})$$

Since g(x) is the least degree monic polynomial in 𝔽_p[x] with β as a root, g(x) = h(x)

Note: The roots of a minimal polynomial are said to form a cyclotomic coset

Minimal Polynomials of F_{16}

The prime subfield of F_{16} is \mathbb{F}_2 .

 $x^{16}+x = x(x+1)(x^2+x+1)(x^4+x+1)(x^4+x^3+1)(x^4+x^3+x^2+x+1)$

- The number of primitive elements of F_{16} is $\phi(15) = 8$
- All the roots of $x^4 + x + 1$ and $x^4 + x^3 + 1$ are primitive elements
- Let α be a root of $x^4 + x + 1$. $F_{16} = \{0, 1, \alpha, \alpha^2, ..., \alpha^{14}\}$
 - x has root 0 and x + 1 has root 1
 - The roots of $x^4 + x + 1$ are $\{\alpha, \alpha^2, \alpha^4, \alpha^8\}$
 - The roots of $x^2 + x + 1$ are $\{\alpha^5, \alpha^{10}\}$
 - The roots of $x^4 + x^3 + x^2 + x + 1$ are $\{\alpha^3, \alpha^6, \alpha^9, \alpha^{12}\}$
 - The roots of $x^4 + x^3 + 1$ are $\{\alpha^7, \alpha^{14}, \alpha^{13}, \alpha^{11}\}$

Minimal Polynomials of F_{16}

 $x^{16} + x = x(x+1)(x^2 + x + 1)(x^4 + x + 1)(x^4 + x^3 + 1)(x^4 + x^3 + x^2 + x + 1)$

Power	Polynomial	Tuple			
0	0	(0	0	0	0)
1	1	(1	0	0	0)
α	α	(0	1	0	0)
α^2	α^2	(0	0	1	0)
α^3	lpha lph	(Ò	0	0	0) 1)
$ \begin{array}{c} \alpha \\ \alpha^2 \\ \alpha^3 \\ \alpha^4 \\ \alpha^5 \\ \alpha^6 \\ \alpha^7 \\ \alpha^8 \\ \alpha^9 \\ \alpha^{10} \\ \alpha^{11} \\ \alpha^{12} \\ \alpha^{13} \\ \alpha^{14} \end{array} $	$1 + \alpha$	(1	1	0	0)
α^{5}	$\alpha + \alpha^2$	(0	1	1	0)
α^6	$\alpha^2 + \alpha^3$	(Ò	0	1	0) 1) 1)
α^7	$1 + \alpha + \alpha^3$	(1	1	0	1)
α ⁸	$1 + \alpha^2$	(1	0	1	0)
α ⁹	$\alpha + \alpha^3$	(Ò	1	0	1)
α^{10}	$1 + \alpha + \alpha^2$	(1	1	1	0)
α^{11}	$\alpha + \alpha^2 + \alpha^3$	(Ò	1	1	1)
α^{12}	$1 + \alpha + \alpha^2 + \alpha^3$	(1	1	1	1)
α^{13}	$1 + \alpha^2 + \alpha^3$	(1	0	1	1)
α^{14}	$1 + \alpha^3$	(1	0	0	1)

Questions? Takeaways?