EE 703: Digital Message Transmission

Instructor: Saravanan Vijayakumaran
Indian Institute of Technology Bombay
Autumn 2012
Date:
Quiz 1: 12 points (90 min)
Each question is worth 3 points.

1. (a) Find an orthonormal basis for the following waveforms.

(b) Use the basis functions to represent the waveforms as vectors $\mathbf{s}_{1}, \mathbf{s}_{2}, \mathbf{s}_{3}, \mathbf{s}_{4}$.
(c) Determine the pair of waveforms which are closest to each other where distance between $s_{i}(t)$ and $s_{j}(t)$ is defined as $\int_{-\infty}^{\infty}\left[s_{i}(t)-s_{j}(t)\right]^{2} d t$.
2. Determine the power spectral density of the following line coding scheme:

$$
\begin{equation*}
u(t)=\sum_{n=-\infty}^{\infty} b_{n} p(t-n T) \tag{1}
\end{equation*}
$$

where $p(t)=I_{[0, T)}(t)$ and the symbol b_{n} is the obtained by mapping a zero bit to amplitude A and mapping a one bit to amplitude 0 or amplitude $2 A$. Successive ones are alternately mapped to 0 and $2 A$. Assume that the bits used to generate b_{n} are independent and equally likely to be zero or one. The formula for the PSD is as follows.

$$
\begin{equation*}
S_{u}(f)=\frac{|P(f)|^{2}}{T} \sum_{k=-\infty}^{\infty} R_{b}[k] e^{-j 2 \pi k f T} \tag{2}
\end{equation*}
$$

3. Consider the binary input ternary output channel below. The prior probability of the input being 0 is 0.4 .

- Find the decision rule $\delta_{M P E}$ which minimizes decision error probability.
- Find the conditional decision error probability when 0 is transmitted and $\delta_{M P E}$ is used.
- Find the decision error probability when $\delta_{M P E}$ is used.

4. Find the maximum likelihood decision rule for the following 3-ary hypothesis testing problem where $\mu=\sqrt{2} \sigma$.

$$
\begin{aligned}
& H_{1}: \quad Y \sim N\left(-\mu, \sigma^{2}\right) \\
& H_{2}: \quad Y \sim N\left(0, e^{2} \sigma^{2}\right) \\
& H_{3} \quad: \quad Y \sim N\left(\mu, \sigma^{2}\right)
\end{aligned}
$$

