EE 703: Digital Message Transmission Instructor: Saravanan Vijayakumaran Indian Institute of Technology Bombay Autumn 2012

Quiz 2 : **12 points** (90 min)

Each question is worth 4 points.

1. The in-phase and quadrature components of a bandpass random process $X_p(t)$ are given by

$$X_c(t) = \frac{1}{\sqrt{2}} \left[X_p(t) \cos 2\pi f_c t + \hat{X}_p(t) \sin 2\pi f_c t \right]$$
$$X_s(t) = \frac{1}{\sqrt{2}} \left[\hat{X}_p(t) \cos 2\pi f_c t - X_p(t) \sin 2\pi f_c t \right]$$

where $\hat{X}_p(t)$ is the Hilbert transform of $X_p(t)$. Show that the power spectral densities of $X_c(t)$ and $X_s(t)$ satisfy the following equation.

$$S_{X_{c}}(f) = S_{X_{s}}(f) = \begin{cases} \frac{1}{2} \left[S_{X_{p}}(f - f_{c}) + S_{X_{p}}(f + f_{c}) \right] & |f| < f_{c} \\ 0 & \text{otherwise} \end{cases}$$

2. The following set of eight signals is used to send three bits over a baseband AWGN channel with PSD $\frac{N_0}{2}$.

$$s_m(t) = A_m p(t), \quad 1 \le m \le 8$$

where $p(t) = I_{[0,1]}(t)$ and

$$A_m = (2m - 1 - 8)A, \quad 1 \le m \le 8$$

Assume that all the eight signals are equally likely to be transmitted.

- (a) Express E_b as a function of A.
- (b) Calculate the exact symbol error probability of the ML receiver as a function of E_b and N_0 .
- (c) Calculate the intelligent union bound on the symbol error probability.
- (d) Calculate the nearest neighbor approximation to the symbol error probability.
- 3. The following set of eight signals is used to send three bits over a passband AWGN channel with PSD σ^2 .

$$s_m(t) = \sqrt{2A_m p(t)} \cos 2\pi f_c t - \sqrt{2B_m p(t)} \sin 2\pi f_c t, \quad 1 \le m \le 8$$

where $p(t) = I_{[0,1]}(t)$ and the values of A_m and B_m are given the following table.

m	A_m	B_m
1	-3A	3A
2	-3A	A
3	-3A	-A
4	-3A	-3A
5	-A	-A
6	-A	-3A
7	A	-3A
8	3A	-3A

Assume that all the eight signals are equally likely to be transmitted.

- (a) Calculate the exact symbol error probability of the ML receiver as a function of A and σ .
- (b) Calculate the intelligent union bound on the symbol error probability.
- (c) Calculate the nearest neighbor approximation to the symbol error probability.