EE 703: Digital Message Transmission
 Instructor: Saravanan Vijayakumaran
 Indian Institute of Technology Bombay
 Autumn 2012

Quiz 2 : 12 points (90 min)
Each question is worth 4 points.

1. The in-phase and quadrature components of a bandpass random process $X_{p}(t)$ are given by

$$
\begin{aligned}
X_{c}(t) & =\frac{1}{\sqrt{2}}\left[X_{p}(t) \cos 2 \pi f_{c} t+\hat{X}_{p}(t) \sin 2 \pi f_{c} t\right] \\
X_{s}(t) & =\frac{1}{\sqrt{2}}\left[\hat{X}_{p}(t) \cos 2 \pi f_{c} t-X_{p}(t) \sin 2 \pi f_{c} t\right]
\end{aligned}
$$

where $\hat{X}_{p}(t)$ is the Hilbert transform of $X_{p}(t)$. Show that the power spectral densities of $X_{c}(t)$ and $X_{s}(t)$ satisfy the following equation.

$$
S_{X_{c}}(f)=S_{X_{s}}(f)= \begin{cases}\frac{1}{2}\left[S_{X_{p}}\left(f-f_{c}\right)+S_{X_{p}}\left(f+f_{c}\right)\right] & |f|<f_{c} \\ 0 & \text { otherwise }\end{cases}
$$

2. The following set of eight signals is used to send three bits over a baseband AWGN channel with PSD $\frac{N_{0}}{2}$.

$$
s_{m}(t)=A_{m} p(t), \quad 1 \leq m \leq 8
$$

where $p(t)=I_{[0,1]}(t)$ and

$$
A_{m}=(2 m-1-8) A, \quad 1 \leq m \leq 8
$$

Assume that all the eight signals are equally likely to be transmitted.
(a) Express E_{b} as a function of A.
(b) Calculate the exact symbol error probability of the ML receiver as a function of E_{b} and N_{0}.
(c) Calculate the intelligent union bound on the symbol error probability.
(d) Calculate the nearest neighbor approximation to the symbol error probability.
3. The following set of eight signals is used to send three bits over a passband AWGN channel with PSD σ^{2}.

$$
s_{m}(t)=\sqrt{2} A_{m} p(t) \cos 2 \pi f_{c} t-\sqrt{2} B_{m} p(t) \sin 2 \pi f_{c} t, \quad 1 \leq m \leq 8
$$

where $p(t)=I_{[0,1]}(t)$ and the values of A_{m} and B_{m} are given the following table.

m	A_{m}	B_{m}
1	$-3 A$	$3 A$
2	$-3 A$	A
3	$-3 A$	$-A$
4	$-3 A$	$-3 A$
5	$-A$	$-A$
6	$-A$	$-3 A$
7	A	$-3 A$
8	$3 A$	$-3 A$

Assume that all the eight signals are equally likely to be transmitted.
(a) Calculate the exact symbol error probability of the ML receiver as a function of A and σ.
(b) Calculate the intelligent union bound on the symbol error probability.
(c) Calculate the nearest neighbor approximation to the symbol error probability.

