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Performance of ML Decision Rule for M-ary
signaling



ML Decision Rule for M-ary Signaling
The ML decision rule for M-ary signaling in a real AWGN
channel is

δML(y) = arg min
1≤i≤M

‖y− si‖2 = arg max
1≤i≤M

[
〈y,si〉 −

‖si‖2

2

]
The ML decision rule for M-ary signaling in a complex AWGN
channel is

δML(y) = arg min
1≤i≤M

‖y− si‖2 = arg max
1≤i≤M

[
Re (〈y,si〉)−

‖si‖2

2

]
In both cases, the rule can be represented as

δML(y) = arg max
1≤i≤M

Zi

where Zi is the decision statistic
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ML Decision Rule for Binary Signaling
ML decision rule

δML(y) = arg max
1≤i≤2

Zi = arg max
1≤i≤2

[
〈y,si〉 −

‖si‖2

2

]
Probability of error

Pe = Q
(
‖s0 − s1‖

2σ

)
= Q

√‖s0 − s1‖2
2N0


Let Eb = 1

2

(
‖s0‖2 + ‖s1‖2

)
. For antipodal signaling,

Pe = Q

(√
2Eb

N0

)
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ML Decision Rule for Binary Signaling
For on-off keying, s1(t) = s(t) and s0(t) = 0 and

Pe = Q

(√
Eb

N0

)

For orthogonal signaling, s1(t) and s2(t) are orthogonal

Pe = Q

(√
Eb

N0

)
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Performance Comparison of Antipodal and Orthogonal
Signaling
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ML Decision Rule for QPSK

Yc

Ys

(
√

Eb,
√

Eb)(−
√

Eb,
√

Eb)

(−
√

Eb,−
√

Eb) (
√

Eb,−
√

Eb)

Pe|1 = Pr
[
Yc < 0 or Ys < 0

∣∣∣∣(√Eb,
√

Eb) was sent
]
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ML Decision Rule for QPSK

Pe|1 = Pr
[
Yc < 0 or Ys < 0

∣∣∣∣(√Eb,
√

Eb) was sent
]

= 2Q

(√
2Eb

N0

)
−Q2

(√
2Eb

N0

)

By symmetry,

Pe|1 = Pe|2 = Pe|3 = Pe|4

Since the four constellation points are equally likely, the
probability of error is given by

Pe =
1
4

4∑
i=1

Pe|i = Pe|1 = 2Q

(√
2Eb

N0

)
−Q2

(√
2Eb

N0

)
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ML Decision Rule for 16-QAM
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Exact analysis is tedious. Approximate analysis is sufficient.
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Revisiting the Q function



Revisiting the Q function
X ∼ N(0,1)

Q(x) = P [X > x ] =

∫ ∞
x

1√
2π

exp
(
−t2

2

)
dt

x t

p(t)

Q(x)

Φ(x)
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Bounds on Q(x) for Large Arguments

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

10−7

10−5

10−3

10−1

x

Q(x)
UB in (1)
LB in (1)

(
1− 1

x2

)
e−

x2
2

x
√

2π
≤ Q(x) ≤ e−

x2
2

x
√

2π
(1)

12 / 43



Bounds on Q(x) for Small Arguments
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Bounds on Q(x) for Small Arguments
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Q Functions with Smallest Arguments Dominate
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• Pe in AWGN channels can typically be bounded by a sum
of Q functions

• The Q function with the smallest argument is used to
approximate Pe

15 / 43



Union Bound Analysis



Union Bound for M-ary Signaling in AWGN
The conditional error probability given Hi is true is

Pe|i = Pr
[
∪j 6=i

{
Zi < Zj

} ∣∣∣∣Hi

]
Since P(A ∪ B) ≤ P(A) + P(B), we have

Pe|i ≤
∑
j 6=i

Pr
[
Zi < Zj

∣∣∣∣Hi

]
=
∑
j 6=i

Q
(
‖sj − si‖

2σ

)

The error probability for prior probabilities πi is given by

Pe =
∑

i

πiPe|i ≤
∑

i

πi
∑
j 6=i

Q
(
‖sj − si‖

2σ

)
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Union Bound for QPSK

Yc

Ys

s1s2
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Pe|1 = Pr
[
∪j 6=1

{
Z1 < Zj

} ∣∣∣∣H1

]
≤
∑
j 6=1

Pr
[
Z1 < Zj

∣∣∣∣H1

]

Pe|1 ≤ Q
(
‖s2 − s1‖

2σ

)
+ Q

(
‖s3 − s1‖

2σ

)
+ Q

(
‖s4 − s1‖

2σ

)
= 2Q

(√
2Eb

N0

)
+ Q

(√
4Eb

N0

)
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Union Bound for QPSK
Union bound on error probability of ML rule

Pe ≤ 2Q

(√
2Eb

N0

)
+ Q

(√
4Eb

N0

)

Exact error probability of ML rule

Pe = 2Q

(√
2Eb

N0

)
−Q2

(√
2Eb

N0

)
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QPSK Error Events

E1 = [Z2 > Z1] ∪ [Z3 > Z1] ∪ [Z4 > Z1] = [Z2 > Z1] ∪ [Z4 > Z1]
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Intelligent Union Bound for QPSK

Pe|1 = Pr
[

(Z2 > Z1) ∪ (Z4 > Z1)

∣∣∣∣H1

]
≤ Pr

[
Z2 < Z1

∣∣∣∣H1

]
+ Pr

[
Z2 < Z1

∣∣∣∣H1

]
= Q

(
‖s2 − s1‖

2σ

)
+ Q

(
‖s4 − s1‖

2σ

)
= 2Q

(√
2Eb

N0

)

By symmetry Pe|1 = Pe|2 = Pe|3 = Pe|4 and

Pe ≤ 2Q

(√
2Eb

N0

)
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Summary of results for QPSK
Exact error probability of ML rule

Pe = 2Q

(√
2Eb

N0

)
−Q2

(√
2Eb

N0

)

Union bound on error probability of ML rule

Pe ≤ 2Q

(√
2Eb

N0

)
+ Q

(√
4Eb

N0

)

Intelligent union bound on error probability of ML rule

Pe ≤ 2Q

(√
2Eb

N0

)
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Intelligent Union Bound for 16-QAM
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Nearest Neighbors Approximation
Let dmin be the minimum distance between constellation points

dmin = min
i 6=j
‖si − sj‖

Let Ndmin (i) denote the number of nearest neighbors of si

Pe|i ≈ Ndmin (i)Q
(

dmin

2σ

)
Averaging over i we get

Pe ≈ N̄dminQ
(

dmin

2σ

)
where N̄dmin denotes the average number of nearest neighbors
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Nearest Neighbors Approximation for 16-QAM
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Bit Error Probability of ML Rules



Bit Error Probability of ML Decision Rule
• Probability of bit error is also termed bit error rate (BER)
• For fixed SNR, symbol error probability depends only on

constellation geometry
• For fixed SNR, BER depends on both constellation

geometry and the bits to signal mapping

Yc

Ys

0010

11 01

Gray coded bitmap for QPSK

Yc

Ys

0011

10 01

Other bitmap for QPSK

• For an M-ary constellation, number of possible bitmaps is
M! = M(M − 1) · · · 3 · 2 · 1
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Bit Error Rate for QPSK using Gray Bitmap

Yc

Ys

0010

11 01

Gray coded bitmap for QPSK

Conditional BER when b[1]b[2] = 00 is

Pb|00 =
1
2

Pr
[
b̂[1]b̂[2] = 01

∣∣∣∣b[1]b[2] = 00
]

+
1
2

Pr
[
b̂[1]b̂[2] = 10

∣∣∣∣b[1]b[2] = 00
]

+ Pr
[
b̂[1]b̂[2] = 11

∣∣∣∣b[1]b[2] = 00
]
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Bit Error Rate for QPSK using Gray Bitmap

Yc

Ys

0010

11 01

Gray coded bitmap for QPSK

Let α =
√

2Eb
N0

Pr
[
b̂[1]b̂[2] = 01

∣∣∣∣b[1]b[2] = 00
]

= Q (α) [1−Q (α)]

Pr
[
b̂[1]b̂[2] = 10

∣∣∣∣b[1]b[2] = 00
]

= Q (α) [1−Q (α)]

Pr
[
b̂[1]b̂[2] = 11

∣∣∣∣b[1]b[2] = 00
]

= Q2 (α)
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Bit Error Rate for QPSK using Gray Bitmap

Yc
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0010

11 01

Gray coded bitmap for QPSK

Conditional BER when b[1]b[2] = 00 is

Pb|00 =
1
2

Q (α) [1−Q (α)] +
1
2

Q (α) [1−Q (α)] + Q2 (α)

= Q(α) = Q

(√
2Eb

N0

)

Pb =
1
4
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)
= Q

(√
2Eb

N0

)
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Bit Error Rate for QPSK using Other Bitmap
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Bit Error Rate for QPSK using Other Bitmap
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Let α =
√

2Eb
N0

Pr
[
b̂[1]b̂[2] = 01

∣∣∣∣b[1]b[2] = 00
]

= Q (α) [1−Q (α)]

Pr
[
b̂[1]b̂[2] = 10

∣∣∣∣b[1]b[2] = 00
]

= Q2 (α)

Pr
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Bit Error Rate for QPSK using Other Bitmap
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0011
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Other bitmap for QPSK

Conditional BER when b[1]b[2] = 00 is

Pb|00 =
1
2

Q (α) [1−Q (α)] +
1
2

Q2 (α) + Q (α) [1−Q (α)]

=
3
2

Q(α)−Q2(α) ≈ 3
2

Q(α) =
3
2

Q

(√
2Eb

N0

)

Pb =
1
4
(
Pb|00 + Pb|01 + Pb|10 + Pb|11

)
≈ 3

2
Q

(√
2Eb
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)
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Comparison of Modulation Schemes



Metrics for Comparing Modulation Schemes

Metrics

Qualitative

Complexity Robustness

Quantitative

Power
Efficiency

Spectral
Efficiency
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Power Efficiency
For an M-ary signaling scheme

Pe ≈ N̄dminQ
(

dmin

2σ

)

= N̄dminQ

√d2
min

2N0

 = N̄dminQ

√d2
min
Eb

√
Eb

2N0


The power efficiency of a modulation scheme is defined as

ηp =
d2

min
Eb

The nearest neighbors approximation can be expressed as

Pe ≈ N̄dminQ

(√
ηpEb

2N0

)
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Power Efficiency of Some Modulation Schemes

Modulation Scheme ηp
On-off keying 2
Orthogonal signaling 2
Antipodal signaling 4
BPSK 4
QPSK 4
16-QAM 1.6
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Spectral Efficiency

Definition (Spectral Efficiency)
The number of bits that can be transmitted using the
modulation scheme per second per Hertz of bandwidth.

Remarks

• If a modulation scheme transmits N bits every T seconds
using W Hertz of bandwidth, the spectral efficiency is N

WT
bits/s/Hz

• We will use null-to-null bandwidth to calculate spectral
efficiency
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Spectral Efficiency of BPSK
Let Sp(f ) be the PSD of BPSK and let S(f ) be the PSD of its
complex envelope.

Sp(f ) =
S(f − fc) + S(−f − fc)

2

The complex envelope is given by

s(t) =
∞∑

n=−∞
bnp(t − nT )

where p(t) is a pulse of duration T and bn ∈ {−A,A}.
Given Sb(z) =

∑∞
k=−∞Rb[k ]z−k , PSD of the complex envelope

is

S(f ) = Sb

(
e j2πfT

) |P(f )|2

T
= A2T sinc2(fT )
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Power Spectral Density of BPSK

−fc fc f−1
T

1
T

PSD of BPSK Complex Envelope

−fc fc f

PSD of BPSK

Null-to-null bandwidth of BPSK = 2
T

Spectral Efficiency of BPSK = 0.5
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Spectral Efficiency of Some Modulation Schemes

Modulation Scheme Spectral Efficiency
BPSK 0.5
BPAM 1
QPSK 1
16-QAM 2

41 / 43



Spectral Efficiency vs Relative Power Efficiency
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Thanks for your attention
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