ML Performance of M-ary Signaling

Saravanan Vijayakumaran
sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

October 10, 2012

Performance of ML Decision Rule for M-ary signaling

ML Decision Rule for M-ary Signaling

The ML decision rule for M-ary signaling in a real AWGN channel is

$$
\delta_{M L}(\mathbf{y})=\arg \min _{1 \leq i \leq M}\left\|\mathbf{y}-\mathbf{s}_{i}\right\|^{2}=\arg \max _{1 \leq i \leq M}\left[\left\langle\mathbf{y}, \mathbf{s}_{i}\right\rangle-\frac{\left\|\mathbf{s}_{i}\right\|^{2}}{2}\right]
$$

The ML decision rule for M-ary signaling in a complex AWGN channel is
$\delta_{M L}(\mathbf{y})=\arg \min _{1 \leq i \leq M}\left\|\mathbf{y}-\mathbf{s}_{i}\right\|^{2}=\arg \max _{1 \leq i \leq M}\left[\operatorname{Re}\left(\left\langle\mathbf{y}, \mathbf{s}_{i}\right\rangle\right)-\frac{\left\|\mathbf{s}_{i}\right\|^{2}}{2}\right]$
In both cases, the rule can be represented as

$$
\delta_{M L}(\mathbf{y})=\arg \max _{1 \leq i \leq M} Z_{i}
$$

where Z_{i} is the decision statistic

ML Decision Rule for Binary Signaling

ML decision rule

$$
\delta_{M L}(\mathbf{y})=\arg \max _{1 \leq i \leq 2} Z_{i}=\arg \max _{1 \leq i \leq 2}\left[\left\langle\mathbf{y}, \mathbf{s}_{i}\right\rangle-\frac{\left\|\mathbf{s}_{i}\right\|^{2}}{2}\right]
$$

Probability of error

$$
P_{e}=Q\left(\frac{\left\|s_{0}-s_{1}\right\|}{2 \sigma}\right)=Q\left(\sqrt{\frac{\left\|s_{0}-s_{1}\right\|^{2}}{2 N_{0}}}\right)
$$

Let $E_{b}=\frac{1}{2}\left(\left\|s_{0}\right\|^{2}+\left\|s_{1}\right\|^{2}\right)$. For antipodal signaling,

$$
P_{e}=Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)
$$

ML Decision Rule for Binary Signaling

For on-off keying, $s_{1}(t)=s(t)$ and $s_{0}(t)=0$ and

$$
P_{e}=Q\left(\sqrt{\frac{E_{b}}{N_{0}}}\right)
$$

For orthogonal signaling, $s_{1}(t)$ and $s_{2}(t)$ are orthogonal

$$
P_{e}=Q\left(\sqrt{\frac{E_{b}}{N_{0}}}\right)
$$

Performance Comparison of Antipodal and Orthogonal Signaling

ML Decision Rule for QPSK

$$
\begin{gathered}
\begin{array}{c}
\left(-\sqrt{E_{b}}, \sqrt{E_{b}}\right) \\
\\
\hline
\end{array} Y_{\left(-\sqrt{E_{b}},-\sqrt{E_{b}}\right)}^{\left(\sqrt{E_{b}}, \sqrt{E_{b}}\right)} \\
P_{e \mid 1}=\operatorname{Pr}\left[Y_{c}<0 \text { or } Y_{s}<0 \mid\left(\sqrt{E_{b}},-\sqrt{E_{b}}\right)\right.
\end{gathered}
$$

ML Decision Rule for QPSK

$$
\begin{aligned}
P_{e \mid 1} & =\operatorname{Pr}\left[Y_{c}<0 \text { or } Y_{s}<0 \mid\left(\sqrt{E_{b}}, \sqrt{E_{b}}\right) \text { was sent }\right] \\
& =2 Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)-Q^{2}\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)
\end{aligned}
$$

By symmetry,

$$
P_{e \mid 1}=P_{e \mid 2}=P_{e \mid 3}=P_{e \mid 4}
$$

Since the four constellation points are equally likely, the probability of error is given by

$$
P_{e}=\frac{1}{4} \sum_{i=1}^{4} P_{e \mid i}=P_{e \mid 1}=2 Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)-Q^{2}\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)
$$

ML Decision Rule for 16-QAM

Exact analysis is tedious. Approximate analysis is sufficient.

Revisiting the Q function

Revisiting the Q function

$X \sim N(0,1)$

$$
Q(x)=P[X>x]=\int_{x}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(\frac{-t^{2}}{2}\right) d t
$$

Bounds on $Q(x)$ for Large Arguments

$$
\begin{equation*}
\left(1-\frac{1}{x^{2}}\right) \frac{e^{-\frac{x^{2}}{2}}}{x \sqrt{2 \pi}} \leq Q(x) \leq \frac{e^{-\frac{x^{2}}{2}}}{x \sqrt{2 \pi}} \tag{1}
\end{equation*}
$$

Bounds on $Q(x)$ for Small Arguments

$$
\begin{equation*}
Q(x) \leq \frac{1}{2} e^{-\frac{x^{2}}{2}} \tag{2}
\end{equation*}
$$

Bounds on $Q(x)$ for Small Arguments

Q Functions with Smallest Arguments Dominate

- P_{e} in AWGN channels can typically be bounded by a sum of Q functions
- The Q function with the smallest argument is used to approximate P_{e}

Union Bound Analysis

Union Bound for M-ary Signaling in AWGN

The conditional error probability given H_{i} is true is

$$
P_{e \mid i}=\operatorname{Pr}\left[\cup_{j \neq i}\left\{z_{i}<Z_{j}\right\} \mid H_{i}\right]
$$

Since $P(A \cup B) \leq P(A)+P(B)$, we have

$$
P_{e \mid i} \leq \sum_{j \neq i} \operatorname{Pr}\left[Z_{i}<Z_{j} \mid H_{i}\right]=\sum_{j \neq i} Q\left(\frac{\left\|s_{j}-s_{i}\right\|}{2 \sigma}\right)
$$

The error probability for prior probabilities π_{i} is given by

$$
P_{e}=\sum_{i} \pi_{i} P_{e \mid i} \leq \sum_{i} \pi_{i} \sum_{j \neq i} Q\left(\frac{\left\|s_{j}-s_{i}\right\|}{2 \sigma}\right)
$$

Union Bound for QPSK

$$
\begin{aligned}
& P_{e \mid 1}=\operatorname{Pr}\left[\cup_{j \neq 1}\left\{Z_{1}<Z_{j}\right\} \mid H_{1}\right] \leq \sum_{j \neq 1} \operatorname{Pr}\left[Z_{1}<Z_{j} \mid H_{1}\right] \\
& P_{e \mid 1} \leq Q\left(\frac{\left\|s_{2}-s_{1}\right\|}{2 \sigma}\right)+Q\left(\frac{\left\|s_{3}-s_{1}\right\|}{2 \sigma}\right)+Q\left(\frac{\left\|s_{4}-s_{1}\right\|}{2 \sigma}\right) \\
& =2 Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)+Q\left(\sqrt{\frac{4 E_{b}}{N_{0}}}\right)
\end{aligned}
$$

Union Bound for QPSK

Union bound on error probability of ML rule

$$
P_{e} \leq 2 Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)+Q\left(\sqrt{\frac{4 E_{b}}{N_{0}}}\right)
$$

Exact error probability of ML rule

$$
P_{e}=2 Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)-Q^{2}\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)
$$

QPSK Error Events

$$
E_{1}=\left[Z_{2}>Z_{1}\right] \cup\left[Z_{3}>Z_{1}\right] \cup\left[Z_{4}>Z_{1}\right]=\left[Z_{2}>Z_{1}\right] \cup\left[Z_{4}>Z_{1}\right]
$$

Intelligent Union Bound for QPSK

$$
\begin{aligned}
P_{e \mid 1} & =\operatorname{Pr}\left[\left(Z_{2}>Z_{1}\right) \cup\left(Z_{4}>Z_{1}\right) \mid H_{1}\right] \\
& \leq \operatorname{Pr}\left[z_{2}<Z_{1} \mid H_{1}\right]+\operatorname{Pr}\left[Z_{2}<Z_{1} \mid H_{1}\right] \\
& =Q\left(\frac{\left\|s_{2}-s_{1}\right\|}{2 \sigma}\right)+Q\left(\frac{\left\|s_{4}-s_{1}\right\|}{2 \sigma}\right) \\
& =2 Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)
\end{aligned}
$$

By symmetry $P_{e \mid 1}=P_{e \mid 2}=P_{e \mid 3}=P_{e \mid 4}$ and

$$
P_{e} \leq 2 Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)
$$

Summary of results for QPSK

Exact error probability of ML rule

$$
P_{e}=2 Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)-Q^{2}\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)
$$

Union bound on error probability of ML rule

$$
P_{e} \leq 2 Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)+Q\left(\sqrt{\frac{4 E_{b}}{N_{0}}}\right)
$$

Intelligent union bound on error probability of ML rule

$$
P_{e} \leq 2 Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)
$$

Intelligent Union Bound for 16-QAM

Assignment 4

Nearest Neighbors Approximation

Let $d_{\text {min }}$ be the minimum distance between constellation points

$$
d_{\min }=\min _{i \neq j}\left\|s_{i}-s_{j}\right\|
$$

Let $N_{d_{\text {min }}}(i)$ denote the number of nearest neighbors of s_{i}

$$
P_{e \mid i} \approx N_{d_{\min }}(i) Q\left(\frac{d_{\min }}{2 \sigma}\right)
$$

Averaging over i we get

$$
P_{e} \approx \bar{N}_{d_{\min }} Q\left(\frac{d_{\min }}{2 \sigma}\right)
$$

where $\bar{N}_{d_{\text {min }}}$ denotes the average number of nearest neighbors

Nearest Neighbors Approximation for 16-QAM

Assignment 4

Bit Error Probability of ML Rules

Bit Error Probability of ML Decision Rule

- Probability of bit error is also termed bit error rate (BER)
- For fixed SNR, symbol error probability depends only on constellation geometry
- For fixed SNR, BER depends on both constellation geometry and the bits to signal mapping

Gray coded bitmap for QPSK		Other bitmap for QPSK	
10	$\stackrel{0}{0}$	11	\bigcirc
	$\xrightarrow{Y_{0}}$		
1.	0.	10.	0.

- For an M-ary constellation, number of possible bitmaps is $M!=M(M-1) \cdots 3 \cdot 2 \cdot 1$

Bit Error Rate for QPSK using Gray Bitmap

Conditional BER when $b[1] b[2]=00$ is

$$
\begin{aligned}
P_{b \mid 00}= & \frac{1}{2} \operatorname{Pr}[\hat{b}[1] \hat{b}[2]=01 \mid b[1] b[2]=00] \\
& +\frac{1}{2} \operatorname{Pr}[\hat{b}[1] \hat{b}[2]=10 \mid b[1] b[2]=00] \\
& +\operatorname{Pr}[\hat{b}[1] \hat{b}[2]=11 \mid b[1] b[2]=00]
\end{aligned}
$$

Bit Error Rate for QPSK using Gray Bitmap

Gray coded bitmap for OPSK	
1.	0.
1.	0.

Let $\alpha=\sqrt{\frac{2 E_{b}}{N_{0}}}$

$$
\begin{aligned}
& \operatorname{Pr}[\hat{b}[1] \hat{b}[2]=01 \mid b[1] b[2]=00]=Q(\alpha)[1-Q(\alpha)] \\
& \operatorname{Pr}[\hat{b}[1] \hat{b}[2]=10 \mid b[1] b[2]=00]=Q(\alpha)[1-Q(\alpha)] \\
& \operatorname{Pr}[\hat{b}[1] \hat{b}[2]=11 \mid b[1] b[2]=00]=Q^{2}(\alpha)
\end{aligned}
$$

Bit Error Rate for QPSK using Gray Bitmap

Conditional BER when $b[1] b[2]=00$ is

$$
\begin{aligned}
P_{b \mid 00} & =\frac{1}{2} Q(\alpha)[1-Q(\alpha)]+\frac{1}{2} Q(\alpha)[1-Q(\alpha)]+Q^{2}(\alpha) \\
& =Q(\alpha)=Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right) \\
P_{b} & =\frac{1}{4}\left(P_{b \mid 00}+P_{b \mid 01}+P_{b \mid 10}+P_{b \mid 11}\right)=Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)
\end{aligned}
$$

Bit Error Rate for QPSK using Other Bitmap

Conditional BER when $b[1] b[2]=00$ is

$$
\begin{aligned}
P_{b \mid 00}= & \frac{1}{2} \operatorname{Pr}[\hat{b}[1] \hat{b}[2]=01 \mid b[1] b[2]=00] \\
& +\frac{1}{2} \operatorname{Pr}[\hat{b}[1] \hat{b}[2]=10 \mid b[1] b[2]=00] \\
& +\operatorname{Pr}[\hat{b}[1] \hat{b}[2]=11 \mid b[1] b[2]=00]
\end{aligned}
$$

Bit Error Rate for QPSK using Other Bitmap

Other bitmap for QPSK	
	\bigcirc
11	
10	01

Let $\alpha=\sqrt{\frac{2 E_{b}}{N_{0}}}$

$$
\begin{aligned}
& \operatorname{Pr}[\hat{b}[1] \hat{b}[2]=01 \mid b[1] b[2]=00]=Q(\alpha)[1-Q(\alpha)] \\
& \operatorname{Pr}[\hat{b}[1] \hat{b}[2]=10 \mid b[1] b[2]=00]=Q^{2}(\alpha) \\
& \operatorname{Pr}[\hat{b}[1] \hat{b}[2]=11 \mid b[1] b[2]=00]=Q(\alpha)[1-Q(\alpha)]
\end{aligned}
$$

Bit Error Rate for QPSK using Other Bitmap

Conditional BER when $b[1] b[2]=00$ is

$$
\begin{aligned}
P_{b \mid 00} & =\frac{1}{2} Q(\alpha)[1-Q(\alpha)]+\frac{1}{2} Q^{2}(\alpha)+Q(\alpha)[1-Q(\alpha)] \\
& =\frac{3}{2} Q(\alpha)-Q^{2}(\alpha) \approx \frac{3}{2} Q(\alpha)=\frac{3}{2} Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right) \\
P_{b} & =\frac{1}{4}\left(P_{b \mid 00}+P_{b \mid 01}+P_{b \mid 10}+P_{b \mid 11}\right) \approx \frac{3}{2} Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)
\end{aligned}
$$

Comparison of Modulation Schemes

Metrics for Comparing Modulation Schemes

Power Efficiency

For an M-ary signaling scheme

$$
\begin{aligned}
P_{e} & \approx \bar{N}_{d_{\min }} Q\left(\frac{d_{\min }}{2 \sigma}\right) \\
& =\bar{N}_{d_{\min }} Q\left(\sqrt{\frac{d_{\min }^{2}}{2 N_{0}}}\right)=\bar{N}_{d_{\min }} Q\left(\sqrt{\frac{d_{\min }^{2}}{E_{b}}} \sqrt{\frac{E_{b}}{2 N_{0}}}\right)
\end{aligned}
$$

The power efficiency of a modulation scheme is defined as

$$
\eta_{p}=\frac{d_{\min }^{2}}{E_{b}}
$$

The nearest neighbors approximation can be expressed as

$$
P_{e} \approx \bar{N}_{d_{\min }} Q\left(\sqrt{\frac{\eta_{p} E_{b}}{2 N_{0}}}\right)
$$

Power Efficiency of Some Modulation Schemes

Modulation Scheme	η_{p}
On-off keying	2
Orthogonal signaling	2
Antipodal signaling	4
BPSK	4
QPSK	4
16-QAM	1.6

Spectral Efficiency

Definition (Spectral Efficiency)

The number of bits that can be transmitted using the modulation scheme per second per Hertz of bandwidth.

Remarks

- If a modulation scheme transmits N bits every T seconds using W Hertz of bandwidth, the spectral efficiency is $\frac{N}{W T}$ bits/s/Hz
- We will use null-to-null bandwidth to calculate spectral efficiency

Spectral Efficiency of BPSK

Let $S_{p}(f)$ be the PSD of BPSK and let $S(f)$ be the PSD of its complex envelope.

$$
S_{p}(f)=\frac{S\left(f-f_{c}\right)+S\left(-f-f_{c}\right)}{2}
$$

The complex envelope is given by

$$
s(t)=\sum_{n=-\infty}^{\infty} b_{n} p(t-n T)
$$

where $p(t)$ is a pulse of duration T and $b_{n} \in\{-A, A\}$.
Given $S_{b}(z)=\sum_{k=-\infty}^{\infty} R_{b}[k] z^{-k}$, PSD of the complex envelope is

$$
S(f)=S_{b}\left(e^{j 2 \pi f T}\right) \frac{|P(f)|^{2}}{T}=A^{2} T \operatorname{sinc}^{2}(f T)
$$

Power Spectral Density of BPSK

PSD of BPSK Complex Envelope

Null-to-null bandwidth of BPSK $=\frac{2}{T}$ Spectral Efficiency of BPSK $=0.5$

Spectral Efficiency of Some Modulation Schemes

Modulation Scheme	Spectral Efficiency
BPSK	0.5
BPAM	1
QPSK	1
16-QAM	2

Spectral Efficiency vs Relative Power Efficiency

Thanks for your attention

