# Digital Modulation 

# Saravanan Vijayakumaran sarva@ee.iitb.ac.in 

Department of Electrical Engineering Indian Institute of Technology Bombay

August 8, 2012

## Digital Modulation

## Definition

The process of mapping a bit sequence to signals for transmission over a channel.

## Example (Binary Baseband PAM)

$1 \rightarrow p(t)$ and $0 \rightarrow-p(t)$

$-p(t)$


## Classification of Modulation Schemes

- Memoryless
- Divide bit sequence into $k$-bit blocks
- Map each block to a signal $s_{m}(t), \quad 1 \leq m \leq 2^{k}$
- Mapping depends only on current $k$-bit block
- Having Memory
- Mapping depends on current $k$-bit block and $L-1$ previous blocks
- $L$ is called the constraint length
- Linear
- Modulated signal has the form

$$
u(t)=\sum_{n} b_{n} g(t-n T)
$$

where $b_{n}$ 's are the transmitted symbols and $g$ is a fixed waveform

- Nonlinear


## Signal Space Representation

## Signal Space Representation of Waveforms

- Given $M$ finite energy waveforms, construct an orthonormal basis

$$
s_{1}(t), \ldots, s_{M}(t) \rightarrow \underbrace{\phi_{1}(t), \ldots, \phi_{N}(t)}_{\text {Orthonormal basis }}
$$

- Each $s_{i}(t)$ is a linear combination of the basis vectors

$$
s_{i}(t)=\sum_{n=1}^{N} s_{i, n} \phi_{n}(t), \quad i=1, \ldots, M
$$

- $s_{i}(t)$ is represented by the vector $\mathbf{s}_{i}=\left[\begin{array}{lll}s_{i, 1} & \cdots & s_{i, N}\end{array}\right]^{T}$
- The set $\left\{\mathbf{s}_{i}: 1 \leq i \leq M\right\}$ is called the signal space representation or constellation


## Constellation Point to Waveform



Waveform to Constellation Point


## Gram-Schmidt Orthogonalization Procedure

- Algorithm for calculating orthonormal basis
- Given $s_{1}(t), \ldots, s_{M}(t)$ the $k$ th basis function is

$$
\phi_{k}(t)=\frac{\gamma_{k}(t)}{\sqrt{E_{k}}}
$$

where

$$
\begin{aligned}
E_{k} & =\int_{-\infty}^{\infty}\left|\gamma_{k}(t)\right|^{2} d t \\
\gamma_{k}(t) & =s_{k}(t)-\sum_{i=1}^{k-1} c_{k, i} \phi_{i}(t) \\
c_{k, i} & =\left\langle s_{k}(t), \phi_{i}(t)\right\rangle, \quad i=1,2, \ldots, k-1
\end{aligned}
$$

## Gram-Schmidt Procedure Example



## Gram-Schmidt Procedure Example



$\phi_{3}(t)$


$$
\begin{aligned}
& \mathbf{s}_{1}=\left[\begin{array}{lll}
\sqrt{2} & 0 & 0
\end{array}\right]^{T} \\
& \mathbf{s}_{2}=\left[\begin{array}{lll}
0 & \sqrt{2} & 0
\end{array}\right]^{T} \\
& \mathbf{s}_{3}=\left[\begin{array}{lll}
\sqrt{2} & 0 & 1
\end{array}\right]^{T} \\
& \mathbf{s}_{4}=\left[\begin{array}{lll}
-\sqrt{2} & 0 & 1
\end{array}\right]^{T}
\end{aligned}
$$

## Properties of Signal Space Representation

- Energy

$$
E_{m}=\int_{-\infty}^{\infty}\left|s_{m}(t)\right|^{2} d t=\sum_{n=1}^{N}\left|s_{m, n}\right|^{2}=\left\|\mathbf{s}_{m}\right\|^{2}
$$

- Inner product

$$
\left\langle s_{i}(t), s_{j}(t)\right\rangle=\left\langle\mathbf{s}_{i}, \mathbf{s}_{j}\right\rangle
$$

## Modulation Schemes

## Pulse Amplitude Modulation

- Signal Waveforms

$$
s_{m}(t)=A_{m} p(t), \quad 1 \leq m \leq M
$$

where $p(t)$ is a pulse of duration $T$ and $A_{m}$ 's denote the $M$ possible amplitudes.

- Usually, $M=2^{k}$ and amplitudes $A_{m}$ take the values

$$
A_{m}=2 m-1-M, \quad 1 \leq m \leq M
$$

Example (M=4) $A_{1}=-3, A_{2}=-1, A_{3}=+1, A_{4}=+3$

- Baseband PAM: $p(t)$ is a baseband signal
- Passband PAM: $p(t)=g(t) \cos 2 \pi f_{c} t$ where $g(t)$ is baseband


## Constellation for PAM




## Phase Modulation

- Complex Envelope of Signals

$$
s_{m}(t)=p(t) e^{j \frac{\pi(2 m-1)}{M}}, \quad 1 \leq m \leq M
$$

where $p(t)$ is a real baseband pulse of duration $T$

- Passband Signals

$$
\begin{aligned}
s_{m}^{p}(t)= & \operatorname{Re}\left[\sqrt{2} s_{m}(t) e^{j 2 \pi f_{c} t}\right] \\
= & \sqrt{2} p(t) \cos \left(\frac{\pi(2 m-1)}{M}\right) \cos 2 \pi f_{c} t \\
& -\sqrt{2} p(t) \sin \left(\frac{\pi(2 m-1)}{M}\right) \sin 2 \pi f_{c} t
\end{aligned}
$$

## Constellation for PSK



## Quadrature Amplitude Modulation

- Complex Envelope of Signals

$$
s_{m}(t)=\left(A_{m, i}+j A_{m, q}\right) p(t), \quad 1 \leq m \leq M
$$

where $p(t)$ is a real baseband pulse of duration $T$

- Passband Signals

$$
\begin{aligned}
s_{m}^{p}(t) & =\operatorname{Re}\left[\sqrt{2} s_{m}(t) e^{j 2 \pi f_{c} t}\right] \\
& =\sqrt{2} A_{m, i} p(t) \cos 2 \pi f_{c} t-\sqrt{2} A_{m, q} p(t) \sin 2 \pi f_{c} t
\end{aligned}
$$

## Constellation for QAM

|  | 16-QAM <br> $\bullet$ <br> $\bullet$ <br> $\bullet$ | $\bullet$ | $\bullet$ |
| :---: | :---: | :---: | :---: |
| $\bullet \bullet$ | $\bullet$ | $\bullet$ |  |
| $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ |

## Power Spectral Density of Digitally Modulated Signals

## PSD Definition for Digitally Modulated Signals

- Consider a real binary PAM signal

$$
u(t)=\sum_{n=-\infty}^{\infty} b_{n} g(t-n T)
$$

where $b_{n}= \pm 1$ with equal probability and $g(t)$ is a baseband pulse of duration $T$


- PSD $=\mathcal{F}\left[R_{u}(\tau)\right]$ Not stationary or WSS


## Cyclostationary Random Process

## Definition (Cyclostationary RP)

A random process $X(t)$ is cyclostationary with respect to time interval $T$ if it is statistically indistinguishable from $X(t-k T)$ for any integer $k$.

## Definition (Wide Sense Cyclostationary RP)

A random process $X(t)$ is wide sense cyclostationary with respect to time interval $T$ if the mean and autocorrelation functions satisfy

$$
\begin{aligned}
m_{X}(t) & =m_{X}(t-T) \text { for all } t, \\
R_{X}\left(t_{1}, t_{2}\right) & =R_{X}\left(t_{1}-T, t_{2}-T\right) \text { for all } t_{1}, t_{2} .
\end{aligned}
$$

## Stationarizing a Cyclostationary Random Process

Theorem
Let $S(t)$ be a cyclostationary random process with respect to the time interval $T$. Suppose $D \sim U[0, T]$ and independent of $S(t)$. Then $S(t-D)$ is a stationary random process.

Proof Sketch
Let $V(t)=S(t-D)$. We prove that $V\left(t_{1}\right) \sim V\left(t_{1}+\tau\right)$.

$$
\begin{aligned}
P\left[V\left(t_{1}+\tau\right)=v\right] & =\frac{1}{T} \int_{0}^{T} P\left[S\left(t_{1}+\tau-x\right)=v\right] d x \\
& =\frac{1}{T} \int_{-\tau}^{T-\tau} P\left[S\left(t_{1}-y\right)=v\right] d y \\
& =\frac{1}{T} \int_{0}^{T} P\left[S\left(t_{1}-y\right)=v\right] d y \\
& =P\left[V\left(t_{1}\right)=v\right]
\end{aligned}
$$

## Stationarizing a Cyclostationary Random Process

Proof Sketch (Contd)
We prove that $V\left(t_{1}\right), V\left(t_{2}\right) \sim V\left(t_{1}+\tau\right), V\left(t_{2}+\tau\right)$.

$$
\begin{aligned}
P & {\left[V\left(t_{1}+\tau\right)=v_{1}, V\left(t_{2}+\tau\right)=v_{2}\right] } \\
& =\frac{1}{T} \int_{0}^{T} P\left[S\left(t_{1}+\tau-x\right)=v_{1}, S\left(t_{2}+\tau-x\right)=v_{2}\right] d x \\
& =\frac{1}{T} \int_{-\tau}^{T-\tau} P\left[S\left(t_{1}-y\right)=v_{1}, S\left(t_{2}-y\right)=v_{2}\right] d y \\
& =\frac{1}{T} \int_{0}^{T} P\left[S\left(t_{1}-y\right)=v_{1}, S\left(t_{2}-y\right)=v_{2}\right] d y \\
& =P\left[V\left(t_{1}\right)=v_{1}, V\left(t_{2}\right)=v_{2}\right]
\end{aligned}
$$

## Stationarizing a Wide Sense Cyclostationary RP

## Theorem

Let $S(t)$ be a wide sense cyclostationary RP with respect to the time interval $T$. Suppose $D \sim U[0, T]$ and independent of $S(t)$. Then $S(t-D)$ is a wide sense stationary RP.

## Proof Sketch

Let $V(t)=S(t-D)$. We prove that $m_{V}(t)$ is a constant function.

$$
\begin{gathered}
m_{V}(t)=E[V(t)]=E[S(t-D)]=E[E[S(t-D) \mid D]] \\
E[S(t-D) \mid D=x]=E[S(t-x)]=m_{S}(t-x) \\
E[E[S(t-D) \mid D]]=\frac{1}{T} \int_{0}^{T} m_{S}(t-x) d x=\frac{1}{T} \int_{0}^{T} m_{S}(y) d y
\end{gathered}
$$

## Stationarizing a Wide Sense Cyclostationary RP

Proof Sketch (Contd)
We prove that $R_{V}\left(t_{1}, t_{2}\right)$ is a function of $t_{1}-t_{2}=k T+\epsilon$

$$
\begin{aligned}
R_{V}\left(t_{1}, t_{2}\right) & =E\left[V\left(t_{1}\right) V^{*}\left(t_{2}\right)\right]=E\left[S\left(t_{1}-D\right) S^{*}\left(t_{2}-D\right)\right] \\
& =\frac{1}{T} \int_{0}^{T} R_{S}\left(t_{1}-x, t_{2}-x\right) d x \\
& =\frac{1}{T} \int_{0}^{T} R_{S}\left(t_{1}-k T-x, t_{2}-k T-x\right) d x \\
& =\frac{1}{T} \int_{-\epsilon}^{T-\epsilon} R_{S}\left(t_{1}-k T-\epsilon-y, t_{2}-k T-\epsilon-y\right) d y \\
& =\frac{1}{T} \int_{-\epsilon}^{T-\epsilon} R_{S}\left(t_{1}-t_{2}-y,-y\right) d y \\
& =\frac{1}{T} \int_{0}^{T} R_{S}\left(t_{1}-t_{2}-y,-y\right) d y
\end{aligned}
$$

## Power Spectral Density of a Realization

Time windowed realizations have finite energy

$$
\begin{aligned}
x_{T_{o}}(t) & =x(t) I_{\left[-\frac{T_{o}}{2}, \frac{\left.T_{o}\right]}{2}\right.}(t) \\
S_{T_{o}}(f) & =\mathcal{F}\left(x_{T_{o}}(t)\right) \\
\hat{S}_{x}(f) & =\frac{\left|S_{T_{o}}(f)\right|^{2}}{T_{o}} \quad \text { (PSD Estimate) }
\end{aligned}
$$

PSD of a realization

$$
\begin{gathered}
\bar{S}_{x}(f)=\lim _{T_{o} \rightarrow \infty} \frac{\left|S_{T_{o}}(f)\right|^{2}}{T_{o}} \\
\frac{\left|S_{T_{o}}(f)\right|^{2}}{T_{0}} \rightleftharpoons \frac{1}{T_{0}} \int_{-\frac{T_{0}}{2}}^{\frac{T_{0}}{2}} x_{T_{o}}(u) x_{T_{o}}^{*}(u-\tau) d u=\hat{R}_{s}(\tau)
\end{gathered}
$$

Power Spectral Density of a Cyclostationary Process $S(t) S^{*}(t-\tau) \sim S(t+T) S^{*}(t+T-\tau)$ for cyclostationary $S(t)$

$$
\begin{aligned}
\hat{R}_{S}(\tau) & =\frac{1}{T_{0}} \int_{-\frac{T_{0}}{2}}^{\frac{T_{0}}{2}} s(t) s^{*}(t-\tau) d t \\
& =\frac{1}{K T} \int_{-\frac{K T}{2}}^{\frac{K T}{2}} s(t) s^{*}(t-\tau) d t \quad \text { for } T_{o}=K T \\
& =\frac{1}{T} \int_{0}^{T} \frac{1}{K} \sum_{k=-\frac{K}{2}}^{\frac{K}{2}} s(t+k T) s^{*}(t+k T-\tau) d t \\
& \rightarrow \frac{1}{T} \int_{0}^{T} E\left[S(t) S^{*}(t-\tau)\right] d t \\
& =\frac{1}{T} \int_{0}^{T} R_{S}(t, t-\tau) d t=R_{V}(\tau)
\end{aligned}
$$

PSD of a cyclostationary process $=\mathcal{F}\left[R_{V}(\tau)\right]$

Power Spectral Density of a Cyclostationary Process
To obtain the PSD of a cyclostationary process

- Stationarize it
- Calculate autocorrelation function of stationarized process
- Calculate Fourier transform of autocorrelation or
- Calculate autocorrelation of cyclostationary process $R_{S}(t, t-\tau)$
- Average autocorrelation between 0 and $T$, $R_{S}(\tau)=\frac{1}{T} \int_{0}^{T} R_{S}(t, t-\tau) d t$
- Calculate Fourier transform of averaged autocorrelation $R_{S}(\tau)$


## Power Spectral Density of Linearly Modulated Signals

## PSD of a Linearly Modulated Signal

- Consider

$$
u(t)=\sum_{n=-\infty}^{\infty} b_{n} p(t-n T)
$$

- $u(t)$ is cyclostationary wrt to $T$ if $\left\{b_{n}\right\}$ is stationary
- $u(t)$ is wide sense cyclostationary wrt to $T$ if $\left\{b_{n}\right\}$ is WSS
- Suppose $R_{b}[k]=E\left[b_{n} b_{n-k}^{*}\right]$
- Let $S_{b}(z)=\sum_{k=-\infty}^{\infty} R_{b}[k] z^{-k}$
- The PSD of $u(t)$ is given by

$$
S_{u}(f)=S_{b}\left(e^{j 2 \pi f T}\right) \frac{|P(f)|^{2}}{T}
$$

## PSD of a Linearly Modulated Signal

$R_{u}(\tau)$

$$
\begin{aligned}
& =\frac{1}{T} \int_{0}^{T} R_{u}(t+\tau, t) d t \\
& =\frac{1}{T} \int_{0}^{T} \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} E\left[b_{n} b_{m}^{*} p(t-n T+\tau) p^{*}(t-m T)\right] d t \\
& =\frac{1}{T} \sum_{k=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \int_{-m T}^{-(m-1) T} E\left[b_{m+k} b_{m}^{*} p(u-k T+\tau) p^{*}(u)\right] d u \\
& =\frac{1}{T} \sum_{k=-\infty}^{\infty} \int_{-\infty}^{\infty} E\left[b_{m+k} b_{m}^{*} p(u-k T+\tau) p^{*}(u)\right] d u \\
& =\frac{1}{T} \sum_{k=-\infty}^{\infty} R_{b}[k] \int_{-\infty}^{\infty} p(u-k T+\tau) p^{*}(u) d u
\end{aligned}
$$

## PSD of a Linearly Modulated Signal

$$
\begin{gathered}
R_{u}(\tau)=\frac{1}{T} \sum_{k=-\infty}^{\infty} R_{b}[k] \int_{-\infty}^{\infty} p(u-k T+\tau) p^{*}(u) d u \\
\int_{-\infty}^{\infty} p(u+\tau) p^{*}(u) d u \rightleftharpoons|P(f)|^{2} \\
\int_{-\infty}^{\infty} p(u-k T+\tau) p^{*}(u) d u \rightleftharpoons|P(f)|^{2} e^{-j 2 \pi f k T} \\
S_{u}(f)=\mathcal{F}\left[R_{u}(\tau)\right]=\frac{|P(f)|^{2}}{T} \sum_{k=-\infty}^{\infty} R_{b}[k] e^{-j 2 \pi t k T} \\
=S_{b}\left(e^{j 2 \pi f T}\right) \frac{|P(f)|^{2}}{T}
\end{gathered}
$$

where $S_{b}(z)=\sum_{k=-\infty}^{\infty} R_{b}[k] z^{-k}$.

## Power Spectral Density of Line Codes

## Line Codes



Further reading: Digital Communications, Simon Haykin, Chapter 6

## Unipolar NRZ

- Symbols independent and equally likely to be 0 or $A$

$$
P(b[n]=0)=P(b[n]=A)=\frac{1}{2}
$$

- Autocorrelation of $b[n]$ sequence

$$
R_{b}[k]=\left\{\begin{array}{cc}
\frac{A^{2}}{2} & k=0 \\
\frac{A^{2}}{4} & k \neq 0
\end{array}\right.
$$

- $p(t)=I_{[0, T)}(t) \Rightarrow P(f)=T \operatorname{sinc}(f T) e^{-j \pi f T}$
- Power Spectral Density

$$
S_{u}(f)=\frac{|P(f)|^{2}}{T} \sum_{k=-\infty}^{\infty} R_{b}[k] e^{-j 2 \pi k f T}
$$

## Unipolar NRZ

$$
\begin{aligned}
S_{u}(f) & =\frac{A^{2} T}{4} \operatorname{sinc}^{2}(f T)+\frac{A^{2} T}{4} \operatorname{sinc}^{2}(f T) \sum_{k=-\infty}^{\infty} e^{-j 2 \pi k T} \\
& =\frac{A^{2} T}{4} \operatorname{sinc}^{2}(f T)+\frac{A^{2}}{4} \operatorname{sinc}^{2}(f T) \sum_{n=-\infty}^{\infty} \delta\left(f-\frac{n}{T}\right) \\
& =\frac{A^{2} T}{4} \operatorname{sinc}^{2}(f T)+\frac{A^{2}}{4} \delta(f)
\end{aligned}
$$

Normalized PSD plot


## Polar NRZ

- Symbols independent and equally likely to be $-A$ or $A$

$$
P(b[n]=-A)=P(b[n]=A)=\frac{1}{2}
$$

- Autocorrelation of $b[n]$ sequence

$$
R_{b}[k]=\left\{\begin{array}{cc}
A^{2} & k=0 \\
0 & k \neq 0
\end{array}\right.
$$

- $P(f)=T \operatorname{sinc}(f T) e^{-j \pi f T}$
- Power Spectral Density

$$
S_{u}(f)=A^{2} T \operatorname{sinc}^{2}(f T)
$$

Normalized PSD plots


## Manchester

- Symbols independent and equally likely to be $-A$ or $A$

$$
P(b[n]=-A)=P(b[n]=A)=\frac{1}{2}
$$

- Autocorrelation of $b[n]$ sequence

$$
R_{b}[k]=\left\{\begin{array}{cc}
A^{2} & k=0 \\
0 & k \neq 0
\end{array}\right.
$$

- $P(f)=j T \operatorname{sinc}\left(\frac{f T}{2}\right) \sin \left(\frac{\pi f T}{2}\right)$
- Power Spectral Density

$$
S_{u}(f)=A^{2} T \operatorname{sinc}^{2}\left(\frac{f T}{2}\right) \sin ^{2}\left(\frac{\pi f T}{2}\right)
$$

## Normalized PSD plots



## Bipolar NRZ

- Successive 1's have alternating polarity

$$
\begin{aligned}
& 0 \rightarrow \text { Zero amplitude } \\
& 1 \rightarrow+A \text { or }-A
\end{aligned}
$$

- Probability mass function of $b[n]$

$$
\begin{aligned}
P(b[n]=0) & =\frac{1}{2} \\
P(b[n]=-A) & =\frac{1}{4} \\
P(b[n]=A) & =\frac{1}{4}
\end{aligned}
$$

- Symbols are identically distributed but they are not independent


## Bipolar NRZ

- Autocorrelation of $b[n]$ sequence

$$
R_{b}[k]=\left\{\begin{array}{rl}
A^{2} / 2 & k=0 \\
-A^{2} / 4 & k= \pm 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

- Power Spectral Density

$$
\begin{aligned}
S_{u}(f) & =T \operatorname{sinc}^{2}(f T)\left[\frac{A^{2}}{2}-\frac{A^{2}}{4}\left(e^{j 2 \pi f T}+e^{-j 2 \pi f T}\right)\right] \\
& =\frac{A^{2} T}{2} \operatorname{sinc}^{2}(f T)[1-\cos (2 \pi f T)] \\
& =A^{2} T \operatorname{sinc}^{2}(f T) \sin ^{2}(\pi f T)
\end{aligned}
$$

## Normalized PSD plots



Thanks for your attention

