Optimal Receiver for the AWGN Channel

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

August 31, 2012

Additive White Gaussian Noise Channel

$$y(t) = s(t) + n(t)$$

s(t) Transmitted Signal y(t) Received Signal n(t) White Gaussian Noise

$$S_n(f)=\frac{N_0}{2}=\sigma^2$$

$$R_n(\tau) = \sigma^2 \delta(\tau)$$

M-ary Signaling in AWGN Channel

- One of *M* continuous-time signals $s_1(t), \ldots, s_M(t)$ is sent
- The received signal is the transmitted signal corrupted by AWGN
- *M* hypotheses with prior probabilities π_i , i = 1, ..., M

$$\begin{array}{rcl} H_{1} & : & y(t) = s_{1}(t) + n(t) \\ H_{2} & : & y(t) = s_{2}(t) + n(t) \\ \vdots & & \vdots \\ H_{M} & : & y(t) = s_{M}(t) + n(t) \end{array}$$

- Random variables are easier to handle than random processes
- We derive an equivalent *M*-ary hypothesis testing problem involving only random variables

White Gaussian Noise through Correlators

· Consider the output of a correlator with WGN input

$$Z = \int_{-\infty}^{\infty} n(t)u(t) dt = \langle n, u \rangle$$

where u(t) is a deterministic finite-energy signal

- Z is a Gaussian random variable
- The mean of Z is

$$E[Z] = \int_{-\infty}^{\infty} E[n(t)] u(t) dt = 0$$

• The variance of Z is

$$\operatorname{var}[Z] = \sigma^2 \|u\|^2$$

White Gaussian Noise through Correlators

Proposition

Let $u_1(t)$ and $u_2(t)$ be linearly independent finite-energy signals and let n(t) be WGN with PSD $S_n(t) = \sigma^2$. Then $\langle n, u_1 \rangle$ and $\langle n, u_2 \rangle$ are jointly Gaussian with covariance

$$\operatorname{cov}(\langle n, u_1 \rangle, \langle n, u_2 \rangle) = \sigma^2 \langle u_1, u_2 \rangle.$$

Proof

To prove that $\langle n, u_1 \rangle$ and $\langle n, u_2 \rangle$ are jointly Gaussian, consider a non-trivial linear combination $a\langle n, u_1 \rangle + b\langle n, u_2 \rangle$

$$a\langle n, u_1
angle + b\langle n, u_2
angle = \int n(t) \left[a u_1(t) + b u_2(t)
ight] dt$$

White Gaussian Noise through Correlators Proof (continued)

$$\operatorname{cov}(\langle n, u_1 \rangle, \langle n, u_2 \rangle) = E[\langle n, u_1 \rangle \langle n, u_2 \rangle]$$

= $E\left[\int n(t)u_1(t) dt \int n(s)u_2(s) ds\right]$
= $\int \int u_1(t)u_2(s)E[n(t)n(s)] dt ds$
= $\int \int u_1(t)u_2(s)\sigma^2\delta(t-s) dt ds$
= $\sigma^2 \int u_1(t)u_2(t) dt$
= $\sigma^2 \langle u_1, u_2 \rangle$

If $u_1(t)$ and $u_2(t)$ are orthogonal, $\langle n, u_1 \rangle$ and $\langle n, u_2 \rangle$ are independent.

Restriction to Signal Space is Optimal

Theorem For the M-ary hypothesis testing given by

$$H_1 : y(t) = s_1(t) + n(t)$$

$$\vdots \qquad \vdots$$

$$H_M : y(t) = s_M(t) + n(t)$$

there is no loss in detection performance by using the optimal decision rule for the following M-ary hypothesis testing problem

$$H_1 : \mathbf{Y} = \mathbf{s}_1 + \mathbf{N}$$

$$\vdots \qquad \vdots$$

$$H_M : \mathbf{Y} = \mathbf{s}_M + \mathbf{N}$$

where **Y**, **s**_{*i*} and **N** are the projections of y(t), $s_i(t)$ and n(t) respectively onto the signal space spanned by $\{s_i(t)\}$.

Projections onto Signal Space

- Consider an orthonormal basis {ψ_i|i = 1,...,K} for the space spanned by {s_i(t)|i = 1,...,M}
- Projection of $s_i(t)$ onto the signal space is

$$\mathbf{s}_{i} = \begin{bmatrix} \langle \mathbf{s}_{i}, \psi_{1} \rangle & \cdots & \langle \mathbf{s}_{i}, \psi_{K} \rangle \end{bmatrix}^{T}$$

• Projection of *n*(*t*) onto the signal space is

$$\mathbf{N} = \begin{bmatrix} \langle \boldsymbol{n}, \psi_1 \rangle & \cdots & \langle \boldsymbol{n}, \psi_K \rangle \end{bmatrix}^T$$

• Projection of y(t) onto the signal space is

$$\mathbf{Y} = \begin{bmatrix} \langle \mathbf{y}, \psi_1 \rangle & \cdots & \langle \mathbf{y}, \psi_K \rangle \end{bmatrix}^T$$

• Component of y(t) orthogonal to the signal space is

$$\mathbf{y}^{\perp}(t) = \mathbf{y}(t) - \sum_{i=1}^{K} \langle \mathbf{y}, \psi_i \rangle \psi_i(t)$$

Proof of Theorem

y(t) is equivalent to $(\mathbf{Y}, y^{\perp}(t))$. We will show that $y^{\perp}(t)$ is an irrelevant statistic.

$$y^{\perp}(t) = y(t) - \sum_{i=1}^{K} \langle y, \psi_i \rangle \psi_i(t)$$

= $s_i(t) + n(t) - \sum_{j=1}^{K} \langle s_i + n, \psi_j \rangle \psi_j(t)$
= $n(t) - \sum_{j=1}^{K} \langle n, \psi_j \rangle \psi_j(t)$
= $n^{\perp}(t)$

where $n^{\perp}(t)$ is the component of n(t) orthogonal to the signal space.

 $n^{\perp}(t)$ is independent of which $s_i(t)$ was transmitted

Proof of Theorem

To prove $y^{\perp}(t)$ is irrelevant, it is enough to show that $n^{\perp}(t)$ is independent of **Y**. For a given *t* and *k*

$$cov(n^{\perp}(t), N_k) = E[n^{\perp}(t)N_k]$$

= $E\left[\left\{n(t) - \sum_{j=1}^n N_j\psi_j(t)\right\}N_k\right]$
= $E[n(t)N_k] - \sum_{j=1}^K E[N_jN_k]\psi_j(t)$
= $\sigma^2\psi_k(t) - \sigma^2\psi_k(t) = 0$

M-ary Signaling in AWGN Channel

• *M* hypotheses with prior probabilities π_i , i = 1, ..., M

$$H_1 : \mathbf{Y} = \mathbf{s}_1 + \mathbf{N}$$

$$\vdots : \vdots$$

$$H_M : \mathbf{Y} = \mathbf{s}_M + \mathbf{N}$$

$$\mathbf{Y} = \begin{bmatrix} \langle \mathbf{y}, \psi_1 \rangle & \cdots & \langle \mathbf{y}, \psi_K \rangle \end{bmatrix}^T$$
$$\mathbf{s}_i = \begin{bmatrix} \langle \mathbf{s}_i, \psi_1 \rangle & \cdots & \langle \mathbf{s}_i, \psi_K \rangle \end{bmatrix}^T$$
$$\mathbf{N} = \begin{bmatrix} \langle \mathbf{n}, \psi_1 \rangle & \cdots & \langle \mathbf{n}, \psi_K \rangle \end{bmatrix}^T$$

• $\mathbf{N} \sim N(\mathbf{m}, \mathbf{C})$ where $\mathbf{m} = \mathbf{0}$ and $\mathbf{C} = \sigma^2 \mathbf{I}$

$$\operatorname{cov}\left(\langle n,\psi_1\rangle,\langle n,\psi_2\rangle\right)=\sigma^2\langle\psi_1,\psi_2\rangle.$$

Optimal Receiver for the AWGN Channel

Theorem (MPE Decision Rule)

The MPE decision rule for M-ary signaling in AWGN channel is given by

$$\begin{split} \delta_{MPE}(\mathbf{y}) &= \arg\min_{1 \le i \le M} \|\mathbf{y} - \mathbf{s}_i\|^2 - 2\sigma^2 \log \pi_i \\ &= \arg\max_{1 \le i \le M} \langle \mathbf{y}, \mathbf{s}_i \rangle - \frac{\|\mathbf{s}_i\|^2}{2} + \sigma^2 \log \pi_i \end{split}$$

Proof

$$\begin{split} \delta_{MPE}(\mathbf{y}) &= \arg \max_{1 \le i \le M} \pi_i p_i(\mathbf{y}) \\ &= \arg \max_{1 \le i \le M} \pi_i \exp\left(-\frac{\|\mathbf{y} - \mathbf{s}_i\|^2}{2\sigma^2}\right) \end{split}$$

Vector Representation of Real Signal Waveforms

Vector Representation of the Real Received Signal

MPE Decision Rule

MPE Decision Rule Example

ML Receiver for the AWGN Channel

Theorem (ML Decision Rule)

The ML decision rule for M-ary signaling in AWGN channel is given by

$$\begin{split} \delta_{ML}(\mathbf{y}) &= \arg\min_{1 \le i \le M} \|\mathbf{y} - \mathbf{s}_i\|^2 \\ &= \arg\max_{1 \le i \le M} \langle \mathbf{y}, \mathbf{s}_i \rangle - \frac{\|\mathbf{s}_i\|^2}{2} \end{split}$$

Proof

$$\begin{split} \delta_{ML}(\mathbf{y}) &= \arg \max_{1 \le i \le M} p_i(\mathbf{y}) \\ &= \arg \max_{1 \le i \le M} \exp\left(-\frac{\|\mathbf{y} - \mathbf{s}_i\|^2}{2\sigma^2}\right) \end{split}$$

ML Decision Rule

ML Decision Rule

ML Decision Rule Example

Continuous-Time Versions of Optimal Decision Rules

Discrete-time decision rules

$$\begin{split} \delta_{MPE}(\mathbf{y}) &= \arg \max_{1 \le i \le M} \langle \mathbf{y}, \mathbf{s}_i \rangle - \frac{\|\mathbf{s}_i\|^2}{2} + \sigma^2 \log \pi_i \\ \delta_{ML}(\mathbf{y}) &= \arg \max_{1 \le i \le M} \langle \mathbf{y}, \mathbf{s}_i \rangle - \frac{\|\mathbf{s}_i\|^2}{2} \end{split}$$

Continuous-time decision rules

$$\begin{split} \delta_{MPE}(\boldsymbol{y}) &= \arg \max_{1 \leq i \leq M} \langle \boldsymbol{y}, \boldsymbol{s}_i \rangle - \frac{\|\boldsymbol{s}_i\|^2}{2} + \sigma^2 \log \pi_i \\ \delta_{ML}(\boldsymbol{y}) &= \arg \max_{1 \leq i \leq M} \langle \boldsymbol{y}, \boldsymbol{s}_i \rangle - \frac{\|\boldsymbol{s}_i\|^2}{2} \end{split}$$

ML Decision Rule for Antipodal Signaling

$$\delta_{ML}(y) = \arg \max_{1 \le i \le 2} \langle y, s_i \rangle - \frac{\|s_i\|^2}{2} = \arg \max_{1 \le i \le 2} \langle y, s_i \rangle$$
$$\delta_{ML}(y) = 1 \iff \langle y, s_1 \rangle \ge \langle y, s_2 \rangle \iff \langle y, s_1 \rangle \ge 0$$
$$\langle y, s_1 \rangle = \int_0^T y(\tau) s_1(\tau) \ d\tau = y \star s_{MF}(T)$$

where $s_{MF}(t) = s_1(T - t)$ is the matched filter.

Optimal Receiver for Passband Signals

Consider M-ary passband signaling over the AWGN channel

$$H_i: y_p(t) = s_{i,p}(t) + n_p(t), i = 1, ..., M$$

where

- $y_p(t)$ Real passband received signal
- $s_{i,p}(t)$ Real passband signals
 - $n_p(t)$ Real passband GN with PSD $\frac{N_0}{2}$

White Gaussian Noise is an Idealization

Infinite Power! Ideal model of passband Gaussian noise

Detection using Complex Baseband Representation

M-ary passband signaling over the AWGN channel

$$H_i: y_p(t) = s_{i,p}(t) + n_p(t), i = 1, ..., M$$

where

 $y_p(t)$ Real passband received signal $s_{i,p}(t)$ Real passband signals $n_p(t)$ Real passband GN with PSD $\frac{N_0}{2}$

The equivalent problem in complex baseband is

$$H_i: y(t) = s_i(t) + n(t), i = 1, ..., M$$

where

y(t) Complex envelope of $y_p(t)$ $s_i(t)$ Complex envelope of $s_{i,p}(t)$ n(t) Complex envelope of $n_p(t)$

Complex Envelope of Passband Signals (Recap)

Frequency Domain Representation

$$S(f) = \sqrt{2}S_{p}^{+}(f + f_{c}) = \sqrt{2}S_{p}(f + f_{c})u(f + f_{c})$$

Time Domain Representation of Positive Spectrum

$$s_{\rho}^{+}(t) = s_{\rho}(t) \star \left[\frac{1}{2}\delta(t) + \frac{j}{2\pi t}\right] = \frac{1}{2}\left[s_{\rho}(t) + j\hat{s}_{\rho}(t)\right]$$

where $\hat{s}_{p}(t) = s_{p}(t) \star \frac{1}{\pi t}$ is the Hilbert transform of $s_{p}(t)$

Time Domain Representation of Complex Envelope

$$\begin{array}{rcl} \sqrt{2}S_{p}(f+f_{c})u(f+f_{c}) & \rightleftharpoons & \frac{1}{\sqrt{2}}\left[s_{p}(t)+j\hat{s}_{p}(t)\right]e^{-j2\pi f_{c}t}\\ s(t) & = & \frac{1}{\sqrt{2}}\left[s_{p}(t)+j\hat{s}_{p}(t)\right]e^{-j2\pi f_{c}t} \end{array}$$

Complex Envelope of Passband Signals (Recap)

Complex Envelope

$$s(t) = s_c(t) + js_s(t)$$

 $s_c(t)$ In-phase component $s_s(t)$ Quadrature component

• Time domain relationship between s(t) and $s_p(t)$

$$s_{p}(t) = \operatorname{Re}\left[\sqrt{2}s(t)e^{j2\pi f_{c}t}\right]$$
$$= \sqrt{2}s_{c}(t)\cos 2\pi f_{c}t - \sqrt{2}s_{s}(t)\sin 2\pi f_{c}t$$

• Frequency domain relationship between s(t) and $s_{\rho}(t)$

$$S_p(f)=rac{S(f-f_c)+S^*(-f-f_c)}{\sqrt{2}}$$

Upconversion (Recap)

$$s_{
ho}(t)=\sqrt{2}s_{c}(t)\cos2\pi f_{c}t-\sqrt{2}s_{s}(t)\sin2\pi f_{c}t$$

Downconversion (Recap)

$\sqrt{2}s_{\rho}(t)\cos 2\pi f_{c}t$ $= 2s_{c}(t)\cos^{2}2\pi f_{c}t - 2s_{s}(t)\sin 2\pi f_{c}t\cos 2\pi f_{c}t$ $= s_{c}(t) + s_{c}(t)\cos 4\pi f_{c}t - s_{s}(t)\sin 4\pi f_{c}t$

Downconversion (Alternative)

$$\begin{split} s(t) &= \frac{1}{\sqrt{2}} \left[s_{\rho}(t) + j \hat{s}_{\rho}(t) \right] e^{-j2\pi f_{c}t} \\ s_{c}(t) + js_{s}(t) &= \frac{1}{\sqrt{2}} \left[s_{\rho}(t) + j \hat{s}_{\rho}(t) \right] e^{-j2\pi f_{c}t} \\ s_{c}(t) &= \frac{1}{\sqrt{2}} \left[s_{\rho}(t) \cos 2\pi f_{c}t + \hat{s}_{\rho}(t) \sin 2\pi f_{c}t \right] \\ s_{s}(t) &= \frac{1}{\sqrt{2}} \left[\hat{s}_{\rho}(t) \cos 2\pi f_{c}t - s_{\rho}(t) \sin 2\pi f_{c}t \right] \end{split}$$

Downconversion (Alternative)

Downconversion (Alternative)

What is the Complex Envelope of Passband GN?

How to characterize $n_c(t)$ and $n_s(t)$ where

$$n_c(t) + jn_s(t) = \frac{1}{\sqrt{2}} [n_p(t) + j\hat{n}_p(t)] e^{-j2\pi f_c t}$$

Complex Envelope PSD for Passband Random Processes

- Let S_p(f) be the PSD of a passband random process and let S(f) be the PSD of its complex envelope
- $S_p(f)$ in terms of S(f)

$$S_{
ho}(f)=rac{S(f-f_c)+S(-f-f_c)}{2}$$

• S(f) in terms of $S_p(f)$

$$S(f) = 2S_{\rho}(f + f_c)u(f + f_c)$$

See explanation in Section 2.3.1 of Madhow's textbook

PSD of the Complex Envelope of Passband GN

But we need to characterize $n_c(t)$ and $n_s(t)$ where $n(t) = n_c(t) + jn_s(t)$ is the complex envelope of passband GN.

Characterizing the Complex Envelope of a Passband Random Process

- Passband Random Process: A real, zero-mean, WSS random process whose autocorrelation function is passband
- The in-phase and quadrature components of a passband random process $X_p(t)$ are given by

$$X_c(t) = \frac{1}{\sqrt{2}} \left[X_p(t) \cos 2\pi f_c t + \hat{X}_p(t) \sin 2\pi f_c t \right]$$

$$X_s(t) = \frac{1}{\sqrt{2}} \left[\hat{X}_p(t) \cos 2\pi f_c t - X_p(t) \sin 2\pi f_c t \right]$$

The complex envelope of X_ρ(t) is given by

$$X(t) = X_c(t) + jX_s(t)$$

Characterizing the In-phase Component

$$\begin{aligned} R_{X_{c}}(t+\tau,t) &= E\left[X_{c}(t+\tau)X_{c}(t)\right] \\ &= \frac{1}{2}R_{X_{p}}(\tau)\cos 2\pi f_{c}(t+\tau)\cos 2\pi f_{c}t + \\ &\quad \frac{1}{2}R_{\hat{X}_{p}}(\tau)\sin 2\pi f_{c}(t+\tau)\sin 2\pi f_{c}t + \\ &\quad \frac{1}{2}R_{X_{p}\hat{X}_{p}}(\tau)\cos 2\pi f_{c}(t+\tau)\sin 2\pi f_{c}t + \\ &\quad \frac{1}{2}R_{\hat{X}_{p}X_{p}}(\tau)\sin 2\pi f_{c}(t+\tau)\cos 2\pi f_{c}t \end{aligned}$$

LTI Filtering of a WSS Process (Cheatsheet)

X(t) is a WSS process and h(t) is the impulse reponse of an LTI system

$$X(t) \longrightarrow h(t) \longrightarrow Y(t)$$

X(t) and Y(t) are jointly WSS and the following relations hold

$$m_Y = m_X \int_{-\infty}^{\infty} h(t) dt$$

$$R_{XY}(\tau) = R_X(\tau) \star h^*(-\tau)$$

$$R_Y(\tau) = R_X(\tau) \star h(\tau) \star h^*(-\tau)$$

$$S_{XY}(f) = S_X(f)H^*(f)$$

$$S_Y(f) = S_X(f)|H(f)|^2$$

A Zero Mean WSS Process and its Hilbert Transform

$$X(t) \longrightarrow \frac{1}{\pi t} \longrightarrow \hat{X}(t)$$

X(t) and $\hat{X}(t)$ are jointly WSS and the following relations hold

$$m_{\hat{\chi}} = m_X \int_{-\infty}^{\infty} h(t) dt = 0$$

$$R_{X\hat{\chi}}(\tau) = R_X(\tau) \star h^*(-\tau) = -\hat{R}_X(\tau)$$

$$R_{\hat{\chi}}(\tau) = R_X(\tau) \star h(\tau) \star h^*(-\tau) = R_X(\tau)$$

$$R_{\hat{\chi}X}(\tau) = R_{\hat{\chi}}(\tau) \star [-h^*(-\tau)] = \hat{R}_X(\tau)$$

Back to Characterizing the In-phase Component

$$\begin{aligned} R_{\chi_{\rho}\hat{\chi}_{\rho}}(\tau) &= -\hat{R}_{\chi_{\rho}}(\tau) \\ R_{\hat{\chi}_{\rho}}(\tau) &= R_{\chi_{\rho}}(\tau) \\ R_{\hat{\chi}_{\rho}\chi_{\rho}}(\tau) &= \hat{R}_{\chi_{\rho}}(\tau) \end{aligned}$$

$$\begin{aligned} R_{\chi_{c}}(t+\tau,t) &= \frac{1}{2}R_{\chi_{\rho}}(\tau)\cos 2\pi f_{c}(t+\tau)\cos 2\pi f_{c}t + \\ &\frac{1}{2}R_{\hat{\chi}_{\rho}}(\tau)\sin 2\pi f_{c}(t+\tau)\sin 2\pi f_{c}t + \\ &\frac{1}{2}R_{\chi_{\rho}\hat{\chi}_{\rho}}(\tau)\cos 2\pi f_{c}(t+\tau)\sin 2\pi f_{c}t + \\ &\frac{1}{2}R_{\hat{\chi}_{\rho}\chi_{\rho}}(\tau)\sin 2\pi f_{c}(t+\tau)\cos 2\pi f_{c}t + \\ &\frac{1}{2}R_{\hat{\chi}_{\rho}\chi_{\rho}}(\tau)\sin 2\pi f_{c}(t+\tau)\cos 2\pi f_{c}t \\ &= \frac{1}{2}\left[R_{\chi_{\rho}}(\tau)\cos 2\pi f_{c}\tau + \hat{R}_{\chi_{\rho}}(\tau)\sin 2\pi f_{c}\tau\right]\end{aligned}$$

Characterizing both the Components

Autocorrelations and Crosscorrelations

$$\begin{aligned} R_{X_c}(\tau) &= \frac{1}{2} \left[R_{X_{\rho}}(\tau) \cos 2\pi f_c \tau + \hat{R}_{X_{\rho}}(\tau) \sin 2\pi f_c \tau \right] \\ R_{X_s}(\tau) &= R_{X_c}(\tau) \\ R_{X_c X_s}(\tau) &= \frac{1}{2} \left[R_{X_{\rho}}(\tau) \sin 2\pi f_c \tau - \hat{R}_{X_{\rho}}(\tau) \cos 2\pi f_c \tau \right] \\ R_{X_c X_s}(\tau) &= -R_{X_s X_c}(\tau) \end{aligned}$$

To derive the PSDs we will use the following

$$egin{array}{rcl} R_{X_p}(au) &\rightleftharpoons& S_{X_p}(f) \ \hat{R}_{X_p}(au) &\rightleftharpoons& -j \mathrm{sgn}(f) S_{X_p}(f) \end{array}$$

Characterizing both the Components

In-phase PSD

$$S_{X_c}(f) = \left\{ egin{array}{c} rac{1}{2} \left[S_{X_
ho}(f-f_c) + S_{X_
ho}(f+f_c)
ight] & |f| < f_c \ 0 & ext{otherwise} \end{array}
ight.$$

- Quadrature PSD: $S_{X_s}(f) = S_{X_c}(f)$
- Fourier transform of crosscorrelation functions

$$\mathcal{S}_{X_{\mathcal{C}}X_{\mathcal{S}}}(f) = \left\{ egin{array}{c} rac{j}{2} \left[\mathcal{S}_{X_{\mathcal{P}}}(f-f_{\mathcal{C}}) - \mathcal{S}_{X_{\mathcal{P}}}(f+f_{\mathcal{C}})
ight] & |f| < f_{\mathcal{C}} \ 0 & ext{otherwise} \end{array}
ight.$$

$$S_{X_sX_c}(f) = -S_{X_cX_s}(f)$$

- If $S_{X_p}(f f_c) = S_{X_p}(f + f_c)$ for $|f| < f_c, R_{X_cX_s}(\tau) = 0$
- Passband RPs with PSDs satisfying above condition have uncorrelated in-phase and quadrature components

Back to the Complex Envelope of Passband GN

In-phase component PSD

$$\mathcal{S}_{\mathit{n_{c}}}(f) = \left\{ egin{array}{cc} rac{\mathit{N_{0}}}{2} & |f| < \mathit{W} < \mathit{f_{c}} \ 0 & ext{otherwise} \end{array}
ight.$$

- Quadrature component PSD: $S_{n_s}(f) = S_{n_c}(f)$
- Since S_{np}(f − f_c) = S_{np}(f + f_c) for |f| < f_c, the components are uncorrelated
- By joint Gaussianity, the components are independent random processes

Back to Optimal Detection in Complex Baseband

• The continuous time hypothesis testing problem in complex baseband

$$H_i: y(t) = s_i(t) + n(t), i = 1, ..., M$$

where

- y(t) Complex envelope of $y_p(t)$
- $s_i(t)$ Complex envelope of $s_{i,p}(t)$
- n(t) Complex envelope of $n_p(t)$
- The equivalent problem in terms of complex random vectors

$$H_i: \mathbf{Y} = \mathbf{s}_i + \mathbf{N}, i = 1, \dots, M$$

where **Y**, **s**_{*i*} and **N** are the projections of y(t), $s_i(t)$ and n(t) respectively onto the signal space spanned by $\{s_i(t)\}$.

• $\mathbf{N} \sim CN(\mathbf{m}, \mathbf{C_N})$ where $\mathbf{m} = \mathbf{0}$ and $\mathbf{C_N} = 2\sigma^2 \mathbf{I}$

$$\operatorname{cov}(\langle n, \psi_1 \rangle, \langle n, \psi_2 \rangle) = 2\sigma^2 \langle \psi_2, \psi_1 \rangle.$$

Autocorrelation of Complex White Gaussian Noise

$$E[n(t)n^{*}(s)] = E[(n_{c}(t) + jn_{s}(t))(n_{c}(s) - jn_{s}(s))]$$

$$= E[n_c(t)n_c(s) + n_s(t)n_s(s) +j(n_s(t)n_c(s) - n_c(t)n_s(s))]$$

 $= E[n_{c}(t)n_{c}(s)] + E[n_{s}(t)n_{s}(s)]$ $+ j(E[n_{s}(t)n_{c}(s)] - E[n_{c}(t)n_{s}(s)])$

$$= E[n_c(t)n_c(s)] + E[n_s(t)n_s(s)]$$

+j(E[n_s(t)] E[n_c(s)] - E[n_c(t)] E[n_s(s)])
= 2\sigma^2\delta(t-s)

Complex White Gaussian Noise through Correlators

$$\begin{aligned} \operatorname{cov}\left(\langle n,\psi_{1}\rangle,\langle n,\psi_{2}\rangle\right) &= E\left[\langle n,\psi_{1}\rangle\left(\langle n,\psi_{2}\rangle\right)^{*}\right] \\ &= E\left[\int n(t)\psi_{1}^{*}(t) \, dt \int n^{*}(s)\psi_{2}(s) \, ds\right] \\ &= \int \int \psi_{2}(t)\psi_{2}^{*}(s)E\left[n(t)n^{*}(s)\right] \, dt \, ds \\ &= \int \int \psi_{2}(t)\psi_{1}^{*}(s)2\sigma^{2}\delta(t-s) \, dt \, ds \\ &= 2\sigma^{2}\int \psi_{2}(t)\psi_{1}^{*}(t) \, dt \\ &= 2\sigma^{2}\langle\psi_{2},\psi_{1}\rangle \end{aligned}$$

If $u_1(t)$ and $u_2(t)$ are orthogonal, $\langle n, u_1 \rangle$ and $\langle n, u_2 \rangle$ are independent.

MPE and ML Rules in Complex Baseband

• The pdf of the observation under H_i

$$p_{i}(\mathbf{y}) = \frac{1}{\pi^{K} \det(\mathbf{C}_{N})} \exp\left(-(\mathbf{y} - \mathbf{s}_{i})^{H} \mathbf{C}_{N}^{-1}(\mathbf{y} - \mathbf{s}_{i})\right)$$
$$= \frac{1}{(2\pi\sigma^{2})^{K}} \exp\left(-\frac{\|\mathbf{y} - \mathbf{s}_{i}\|^{2}}{2\sigma^{2}}\right)$$

• The MPE rule is given by

$$\begin{split} \delta_{MPE}(\mathbf{y}) &= \arg \max_{1 \le i \le M} \operatorname{Re}\left(\langle \mathbf{y}, \mathbf{s}_i \rangle\right) - \frac{\|\mathbf{s}_i\|^2}{2} + \sigma^2 \log \pi_i \\ &= \arg \max_{1 \le i \le M} \operatorname{Re}\left(\langle \mathbf{y}, \mathbf{s}_i \rangle\right) - \frac{\|\mathbf{s}_i\|^2}{2} + \sigma^2 \log \pi_i \end{split}$$

• The ML rule is given by

$$\delta_{ML}(\mathbf{y}) = \arg \max_{1 \leq i \leq M} \operatorname{Re}\left(\langle y, s_i \rangle\right) - \frac{\|s_i\|^2}{2}$$

ML Receiver for QPSK in Passband Gaussian Noise

QPSK signals where p(t) is a real baseband pulse, A is a real number and $1 \le m \le 4$

$$s_m^{p}(t) = \sqrt{2}Ap(t)\cos\left(2\pi f_{c}t + \frac{\pi(2m-1)}{4}\right)$$
$$= \operatorname{Re}\left[\sqrt{2}Ap(t)e^{j\left(2\pi f_{c}t + \frac{\pi(2m-1)}{4}\right)}\right]$$

Complex Envelope of QPSK Signals

$$s_m(t) = Ap(t)e^{jrac{\pi(2m-1)}{4}}, \quad 1 \le m \le 4$$

Orthonormal basis for the complex envelope consists of only

$$\phi(t) = \frac{\rho(t)}{\sqrt{E_{\rho}}}$$

ML Receiver for QPSK in Passband Gaussian Noise

Let $\sqrt{E_b} = \frac{A\sqrt{E_p}}{\sqrt{2}}$. The vector representation of the QPSK signals is

The hypothesis testing problem in terms of vectors is

$$H_i$$
: $\mathbf{Y} = \mathbf{s}_i + \mathbf{N}, i = 1, \dots, M$

where

$$\mathbf{N}\sim \mathcal{CN}\left(\mathbf{0},\mathbf{2}\sigma^{2}
ight)$$

Thanks for your attention