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Additive White Gaussian Noise Channel

AWGN

s() Channel

— y(1)

y(t) = s(t) + n(t)

s(t) Transmitted Signal
y(t) Received Signal
n(t) White Gaussian Noise

Sn(f) 5

Rn(7) = 02(5(7)
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M-ary Signaling in AWGN Channel

One of M continuous-time signals s1(t), ..., su(t) is sent

The received signal is the transmitted signal corrupted by
AWGN

M hypotheses with prior probabilities 7;, i =1,...,M

Hy o y(t) = s1(8) + n(t)
Ho o y(t) = so(t) + n(t)

Hu  y(t) = su(t) + n(t)

Random variables are easier to handle than random
processes

We derive an equivalent M-ary hypothesis testing problem
involving only random variables
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White Gaussian Noise through Correlators

e Consider the output of a correlator with WGN input

z/ fu(t) dt = (n, u)

where u(t) is a deterministic finite-energy signal
e Z is a Gaussian random variable
e The mean of Z is

E[7] = /_ " E[n(t) u(t) ot =

e The variance of Z is

var[Z] = o?||u|)?
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White Gaussian Noise through Correlators

Proposition

Let uy(t) and ux(t) be linearly independent finite-energy signals
and let n(t) be WGN with PSD S,(f) = ¢2. Then (n, uy) and

(n, uo) are jointly Gaussian with covariance

cov ((n, uy), (n, up)) = o2 (U, Up).

Proof
To prove that (n, uy) and (n, u») are jointly Gaussian, consider a
non-trivial linear combination a(n, uy) + b{n, us)

ain, us) + bin, up) = / n() [aus (1) + bus(t)] dt



White Gaussian Noise through Correlators

Proof (continued)

cov((nuy),(nw)) = E[(n u)(n, up)]

_E [/ n(t)un (1) dt/n(s)u (s) ds}
_ //u1 Jus(8)E [n(t)n(s)] ot ds
_ //U1 Vua(8)025(t — 5) dit ds

_ /u1(t)u2(t) it

= 0 <U1,U2>

If us(t) and uo(t) are orthogonal, (n, uy) and (n, u,) are
independent.
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Restriction to Signal Space is Optimal

Theorem
For the M-ary hypothesis testing given by

Hy o y(t) = s1(t) + n(t)

Hu o y(t) = sm(t) + n(t

there is no loss in detection performance by using the optimal
decision rule for the following M-ary hypothesis testing problem

Hy : Y=s{+N

Hy : Y=sy+N

where Y, s; and N are the projections of y(t), si(t) and n(t)
respectively onto the signal space spanned by {s;(t)}.
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Projections onto Signal Space
Consider an orthonormal basis {v|i = 1,..., K} for the
space spanned by {s;(f)|i=1,..., M}

Projection of s;(t) onto the signal space is
si=[(s,v1) - (Sivk)] r

Projection of n(t) onto the signal space is

N=[(nw) - (mvk)]

Projection of y(t) onto the signal space is

Y= [) - )]

Component of y(t) orthogonal to the signal space is

K

Yy = y(t) = (i)

i=1
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Proof of Theorem

y(t) is equivalent to (Y, y*(t)). We will show that y-(t) is an
irrelevant statistic.

K
yrt) = y() =) (v vty

i=1

K
= Zsl+n Vj)yi(t)
j=1

K
= Z 1/’/ 1/)/
j=1

= n(t)

where n*(t) is the component of n(t) orthogonal to the signall
space.
n*(t) is independent of which s;(t) was transmitted
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Proof of Theorem

To prove y(t) is irrelevant, it is enough to show that n'(t) is

independent of Y. For a given t and k

cov(nt(t), N)

Eln ()N

E Hn(t) - Z N,-w,-(t)} Nk]
j=1

K
E[n(t)Ng] = >~ EIN;NiJu;(t)
j=1

o2x(t) — P yk(t) = 0

10/50



M-ary Signaling in AWGN Channel
e M hypotheses with prior probabilities =, i=1,...,.M

Hi : Y=s1+N
HM : Y:S.M-FN
Y = [(y,¢1) - <%¢K>]T

si = [(snen) - (snuw)]’
N = [(ny) - (nu)]

e N~ N(m,C) where m =0 and C = o2l

cov ((n, 1), (N, o)) = o2 (thy, 9a).
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Optimal Receiver for the AWGN Channel

Theorem (MPE Decision Rule)

The MPE decision rule for M-ary signaling in AWGN channel is
given by

Supe(y) = arg min |ly —s;||* —20°log;
= arg max (y,s;) - lIsil® + o2 log 7
1<i< ’ 2

Proof

dupe(y) = arg max W:P:(V)

1<i<

= arg max mexp _ly sl
1<i<M 202
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Vector Representation of Real Signal Waveforms

Py (1)
)é >/ > Sit
a(t)
>® >@ > Siz
Si(t) — : =8
hr_1(1)
>é >@ > SiKk—1
Pk (1)
>é >@ > Sik
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Vector Representation of the Real Received Signal

Py (1)
)é N[ > 1
Pa(t)
>® >@ > Vo
y(t) — : : : =y
Pr_1(1)
>é >@ > Vi1
Pk (1)
>é N > Vi
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MPE Decision Rule

2
*@ +0’2 |Og7r1
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o\ o\
Sy syl 4 52 j0g my
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MPE Decision Rule Example

si(t) s2(1) s3(t)

2
1 2 3 t
1 2 3 t 1 t
2
sa(t) y(t)
2 2
1 2 3 t 1 2 3 t
1 1 5
Let7r1:7r2:§,7r3:7r4:6,0 =1, and log2 = 0.69.
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ML Receiver for the AWGN Channel

Theorem (ML Decision Rule)

The ML decision rule for M-ary signaling in AWGN channel is
given by

owm(y) = arg min |ly —s||”

= arg max (y,s;) — lIsil®
1<i<M"’ 2

Proof

om(y) = arg max p(y)

1<i<M

= arg max exp —M
1<i<M 202
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ML Decision Rule
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ML Decision Rule

N

]

2 11l

\d’\ ARl
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—Sy

\A S 2
K+ {1
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ML Decision Rule Example

si(t) s2(t) (1)

sa(t) y(t)
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Continuous-Time Versions of Optimal Decision Rules

e Discrete-time decision rules

_ Isil> 2 ,
ompe(y) = arg 1TI§X (y,8i) — 5 To log ;
om(y) = arg max (y.s;) — Isill®
1<i< ’ 2
e Continuous-time decision rules
émpe(y) = arg max (y,s;) — lIsil® + o2 log 7
1<i<m’ 2
| sil|

dm(y) = arg [max. (y,si) — S
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ML Decision Rule for Antipodal Signaling

si(t) s2(1)

_ P _
om(y) = arg max(y, sj) — —— = arg max(y, s

(SML(y):‘I — <y,31>2<y,32> — (y,s1>20

;
(y,s1) = /0 y(7)s1(7) d7 = y  sur(T)
where sye(t) = s1(T — t) is the matched filter.
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Optimal Receiver for Passband Signals
Consider M-ary passband signaling over the AWGN channel

where
¥p(t) Real passband received signal
Sip(t) Real passband signals
np(t) Real passband GN with PSD "o

Passband GN PSD

NZ
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White Gaussian Noise is an Idealization

WGN PSD

Nz

Infinite Power! |deal model of passband Gaussian noise

Passband GN PSD

Nz
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Detection using Complex Baseband Representation
e M-ary passband signaling over the AWGN channel

Hi: yplt) = sip(f) + np(t), i=1,....M

where

¥p(t) Real passband received signal
Sip(t) Real passband signals
np(t) Real passband GN with PSD %o

e The equivalent problem in complex baseband is
Hi:yt)y=si(t)y+n(t), i=1,....M

where

y(t) Complex envelope of yy(t)
si(t) Complex envelope of s; x(t)
n(t) Complex envelope of ny(t)
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Complex Envelope of Passband Signals (Recap)

e Frequency Domain Representation
S(f) = V2S5 (f + f;) = V2Sp(f + fo)u(f + f;)
e Time Domain Representation of Positive Spectrum
J

550 = 5p(0) » | 3(0) + 5| = 3 196(0) +3o(0)

where 85(t) = sp(t) x - is the Hilbert transform of sp(t)
e Time Domain Representation of Complex Envelope

VaSy(f + f)u(f+£;) = \Jg [55(6) + j3o(1)] &2t
s(t) = \Jé [Sp(t) + j8p(t)] /27!
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Complex Envelope of Passband Signals (Recap)
e Complex Envelope
s(t) = so(t) + jss(t)

sc(t) In-phase component
ss(t) Quadrature component

e Time domain relationship between s(t) and sy(t)
sp(t) = Re [\@s(t)eszrfct]
— V/254(t) cos 2nfst — V/2ss(t) sin 2nfst
» Frequency domain relationship between s(t) and sy(t)

S(f— ) + S*(—f — )
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Upconversion (Recap)

sp(t) = V2s¢(t) cos 2rfst — V254(t) sin 2715t

se() @

V2 cos 2rf,t

GD—) Sp(t)

—V2sin2xf.t

e
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Downconversion (Recap)

V2s,(t) cos 2rf,t
= 254(t)cos® 2nfst — 254(t) sin 2nfyt cos 2rfst
= S¢(t) + sc(t)cosdnft — sg(t) sindnf.t

>@ » LPF > Sc(t)
V2 cos 2rf,t
—v2sin2rnf.t

>é » LPF » Ss(t)
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Downconversion (Alternative)

s(t) = \}2 [sp(t) + j8p(t)] €727t
Sc(t) ‘|‘jss(t) = \1@ [sp(t) +j§p(t)] e—j27rfct
So(t) = \1@ [Sp(t) cos 2nft + ép(f) sin 2w fet]

ss(t) = (t)cos 2rfot — sp(t) sin 27t 1]

1s
\@ P
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Downconversion (Alternative)

se(t)

ss(t)

Q)—» se(t)

\1@ [sp(t) cos 27 fet + Sp(t) sin 27 f:t]
\1@ [8p(t) cos 27 fet — sp(t) sin 2 fst]
o %)
r
% cos 2rfst
ﬁ sin 2rfst
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Downconversion (Alternative)

sc(t) = \}é[sp(t)00327rfct+ép(t)sin27rfct]
ss(t) = \}é[ép(t)00327rfct—sp(t)sin27rfct]
>@
—%sin&rfct
Sp(t) — (4 — sslt)
\i@cos%fct T
L

t 2
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What is the Complex Envelope of Passband GN?

Passband GN PSD

N

How to characterize n.(t) and ns(t) where

ne(t) + jns(t) = \1@ [Np(t) + jhp(t)] e 727!
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Complex Envelope PSD for Passband Random
Processes

Let Sp(f) be the PSD of a passband random process and
let S(f) be the PSD of its complex envelope

Sp(f) in terms of S(f)

S(f — f) + S(—f — £)
2

Sp(f) =

S(f) in terms of Sy(f)

S(f) = 2S,(f + fp)u(f + f;)

See explanation in Section 2.3.1 of Madhow’s textbook
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PSD of the Complex Envelope of Passband GN

Passband GN PSD

NE

GN Complex Envelope PSD

No

But we need to characterize nq(t) and ns(t) where
n(t) = nc(t) + jns(t) is the complex envelope of passband GN.
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Characterizing the Complex Envelope of a Passband
Random Process

e Passband Random Process: A real, zero-mean, WSS
random process whose autocorrelation function is
passband

¢ The in-phase and quadrature components of a passband
random process Xp(t) are given by

Xo(t) = \1@[Xp(t)COSZWfCt—l—)A(p(t)sin27rfct]
Xs(t) = \1@ [)A(p(t)cos&rfct—Xp(t)sin27rfct]

e The complex envelope of X,(f) is given by

X(t) = Xc(t) + jXs(1)
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Characterizing the In-phase Component

Rxc(t + 7, t)

E [Xo(t + 1) Xc(1)]

1
§Rxp(7') cos 2rfe(t + 7) cos 2rfet +

1 , .
é,‘?)A(p(r) sin2nfg(t + 7) sin2wfot +

1

ERxp)“(p(T) cos 2rfe(t + 7) sin 2w fet +

1

EHXPXP(T) sin2nf(t 4 7) cos 2rfst
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LTI Filtering of a WSS Process (Cheatsheet)

X(t) is a WSS process and h(t) is the impulse reponse of an

LTI system

X(t) —| h(t) — Y(1)

X(t) and Y(t) are jointly WSS and the following relations hold

my

Rxy(7)
Ry(7)
Sxy(f)

Sy(f) =

my h(t) at

— 00
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A Zero Mean WSS Process and its Hilbert Transform

X(1) SJus > X(1)

it

X(t) and X(t) are jointly WSS and the following relations hold

mj(:mx/ h(t

) = Rx(r)xh(-7)= - Rx(r)
Ry(r) = ()*h(T)*h*( 7) = Rx(7)
)

N

= Rg(r)x[=h"(=7)] = Rx(7)
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Back to Characterizing the In-phase Component

Rxc(t + T, t)

Rxpxp(T) = —'E*’Xp(T)
Ry, (1) = Rx,(7)
Ryx, () = Bl

1
ERX,,(T) cos 2rfe(t + 7) cos 2nfet +

1 . .
ERXP(T) sin2rfe(t + 7) sin2nf:t +
1

5 Rx,%,(7) c08 2rfe(t + 7) sin 2 ft +

1

ER)?pxp(T) sin2rfe(t + 7) cos 2nf.t

1 & .
5 | R (7) cos 2ot + Ry, (7) sin2nfer |
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Characterizing both the Components

Autocorrelations and Crosscorrelations

Rx. () = % [RXP(T) cos 2rf,T + Ry, (7) sin 27rfCT}
Rx,(t) = Rx.(7)
Rx.x,(T) = % [Rxp(f) sin2rf,r — Ry, () cos wﬂ
Rx.x,(1) = — Rxyx.(7)

To derive the PSDs we will use the following

Rx,(T) = Sx,(f)
Rx,(t) = —Jjsan(f)Sx,(f)
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Characterizing both the Components
In-phase PSD

]
_ z[sx(f—fc)+3x(f+fc)] If| < fo
Sxe(f) = { 0o ’ otherwise

Quadrature PSD: Sx,(f) = Sx,.(f)
Fourier transform of crosscorrelation functions

L [Sx,(f—1fo) = Sx,(f+1)] Ifl<fo
—J) 2
SXCXS(f)_{ 0o ’ otherwise

SXsXc(f) = = SXch(f)
If Sx,(f — fc) = Sx,(f + fc) for |[f| < fo, Rx.x,(T) =0

Passband RPs with PSDs satisfying above condition have
uncorrelated in-phase and quadrature components
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Back to the Complex Envelope of Passband GN

Passband GN PSD

NE

In-phase component PSD

o fl<w<f
= 2 c
Sne(1) { 0 otherwise

Quadrature component PSD: S, (f) = Sp,(f)
Since Sp,(f — fc) = Sp,(f + f¢) for |f| < f;, the components
are uncorrelated

By joint Gaussianity, the components are independent
random processes
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Back to Optimal Detection in Complex Baseband

e The continuous time hypothesis testing problem in
complex baseband

Hi:y(t)=si(t)+n(t), i=1,....M

where
y(t) Complex envelope of yp(t)
si(t) Complex envelope of s; ,(t)
n(t) Complex envelope of ny(t)
e The equivalent problem in terms of complex random
vectors

Hi:Y=s;+N, i=1,....M

where Y, s; and N are the projections of y(t), s;(t) and n(t)
respectively onto the signal space spanned by {s;j(t)}.
e N~ CN(m,Cy) where m = 0 and Cy = 2521

cov ({n, 1), (N, 1)) = 202 (o, 1)
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Autocorrelation of Complex White Gaussian Noise

E[n(t)n*(s)]

E [(ne(t) + jns(t)) (ne(s) — jns(s))]

= E[nc(t)ne(s) + ns(t)ns(s)

+J (ns(t)ne(s) — ne(t)ns(s))]

E [ne(t)ne(s)] + E [ns(t)ns(s)]

+/ (E [ns(t)ne(s)] — E [ne(t)ns(s)])

E [nc(t)ne(s)] + E [ns(t)ns(s)]

+/ (E [ns(t)] E [nc(s)] — E [nc(1)] E [ns(s)])
2025(t — s)
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Complex White Gaussian Noise through Correlators

cov (). (Maiz)) = Ef(nas) ((n. )]
- E [ [t e [ n(syuats) ds}

- / / va(y03(S)E [n(H)n*(s)] dt ds
- / / () (5)2025(t — §) dt dis

= 20% [ wa(tyui(o ot
= 20%(4h, 1)

If ui(t) and wo(t) are orthogonal, (n, uy) and (n, u,) are
independent.
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MPE and ML Rules in Complex Baseband

e The pdf of the observation under H;

pi(y) = TrKde1t(CN) exp (—(V —s)cy'(y - Si)>

_ 1 ly —sil?
 (2no?)K &P < 202

e The MPE rule is given by

_ W lsil® o
ompe(y) = arg max Re(ly,s;))— =5~ + o logm
= arg max Re((y,s)) — MJN;Q log ;
1<i<M e 2
e The ML rule is given by
Isill?

om(y) = arg max Re((y,s;) —
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ML Receiver for QPSK in Passband Gaussian Noise

QPSK signals where p(t) is a real baseband pulse, A is a real
numberand1 < m<4

sh(t) = V2Ap(t)cos <27rfct—|— 7T(2”1_1))

_ Re [\@Ap(t)ej(zwfcuw(zzm))}

Complex Envelope of QPSK Signals

cm(2m—1)

sm(t) =Ap(t)e!~ 4, 1<m<4
Orthonormal basis for the complex envelope consists of only

o0 =52
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ML Receiver for QPSK in Passband Gaussian Noise

Let VEp = A?. The vector representation of the QPSK
signals is

s1 = VEr+jVEb

s = VE,+jVE
s3s = VE,—jVE
ss = VE—jVE

The hypothesis testing problem in terms of vectors is
H:Y=s;+N, i=1,....M

where
N~ CN (o, 202)
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Thanks for your attention
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