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Motivation



System Model used to Derive Optimal Receivers

s() y(1)
y(t) = s(t) + n(t)

s(t) Transmitted Signal
y(t) Received Signal
n(t) Noise
Simplified System Model. Does Not Account For
e Propagation Delay
e Carrier Frequency Mismatch Between Transmitter and
Receiver
e Clock Frequency Mismatch Between Transmitter and
Receiver
In short, Lies! Why?
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Why Study the Simplified System Model?
s() y(1)

y(t) = s(t) + n(t)

¢ Receivers estimate propagation delay, carrier frequency
and clock frequency before demodulation

e Once these unknown parameters are estimated, the
simplified system model is valid
e Then why not study parameter estimation first?

e Hypothesis testing is easier to learn than parameter
estimation
o Historical reasons



Unsimplifying the System Model

Effect of Propagation Delay
e Consider a complex baseband signal

S(t)= > bup(t—nT)

nN=—o0

and the corresponding passband signal
sp() = Re [ﬂs(t)e/?”fcf .

o After passing through a noisy channel which causes
amplitude scaling and delay, we have

Yo(t) = Asp(t — 1) + np(t)

where A is an unknown amplitude, 7 is an unknown delay
and np(t) is passband noise



Unsimplifying the System Model

Effect of Propagation Delay
e The delayed passband signal is

sp(t—7) = Re [\/Es(t - T)e/?”fc(’*f)]
— Re [\@s(t _ T)ej06/27rfct]

where 6 = —2nf,7 mod 2x. For large f;, 6 is modeled as
uniformly distributed over [0, 27].

e The complex baseband representation of the received
signal is then

y(t) = AePs(t — 1) + n(t)

where n(t) is complex Gaussian noise.
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Unsimplifying the System Model

Effect of Carrier Offset

Frequency of the local oscillator (LO) at the receiver differs
from that of the transmitter

Suppose the LO frequency at the transmitter is f;
sp(t) = Re [\@S(t)efz’”cf] .

Suppose that the LO frequency at the receiver is f, — Af
The received passband signal is

Yo(t) = Asp(t — 1) + np(1)

The complex baseband representation of the received
signal is then

y(t) = Ae JCTAR O gt — 1) 4 n(t)
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Unsimplifying the System Model

Effect of Clock Offset

Frequency of the clock at the receiver differs from that of
the transmitter

The clock frequency determines the sampling instants at
the matched filter output

Suppose the symbol rate at the transmitter is lT symbols
per second

Suppose the receiver sampling rate is 1+ symbols per
second where |§| < 1 and 6 may be positive or negative

The actual sampling instants and ideal sampling instants
will drift apart over time
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The Solution

Estimate the unknown parameters 7, 8, Af and §
Timing Synchronization Estimation of =

Carrier Synchronization Estimation of § and Af
Clock Synchronization Estimation of ¢

Perform demodulation after synchronization
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Parameter Estimation



Parameter Estimation

¢ Hypothesis testing was about making a choice between
discrete states of nature

e Parameter or point estimation is about choosing from a
continuum of possible states

Example
Consider the complex baseband signal below

y(t) = Ae/?s(t — 1) + n(t)

e The phase 6 can take any real value in the interval [0, 27)
e The amplitude A can be any real number
e The delay 7 can be any real number
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System Model for Parameter Estimation

Consider a family of distributions
Y~Py, BN

where the observation vector Y e ' C R" for n € N and
A C R™ is the parameter space

Example:
Y=A+N
where A is an unknown parameter and N is a standard
Gaussian RV
The goal of parameter estimation is to find 6 given Y

An estimator is a function from the observation space to
the parameter space

:T = A
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Which is the Optimal Estimator?

e Assume there is a cost function C which quantifies the
estimation error
C:AxAN=R

such that C|a, 6] is the cost of estimating the true value of ¢
as a
e Examples of cost functions
Squared Error Cla,f] = (a— 0)?
Absolute Error Cla, 6] = |a— 0|

Threshold Error Cla, 6] = { (1) :]: {Z: z; i 2
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Which is the Optimal Estimator?

With an estimator § we associate a conditional cost or risk
conditioned on 8

R(0) = E {c [é(v),e}}

Suppose that the parameter 6 is the realization of a
random variable ©

The average risk or Bayes risk is given by
r(0) = E{Ro(d)}

The optimal estimator is the one which minimizes the
Bayes risk
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Which is the Optimal Estimator?

e Given that
Rs(0) = E, {c [é(v),e}} —E {c [é(v),e} ’e - e}
the average risk or Bayes risk is given by

rd) = E {c [é(v), e} }

E{E{C [é(v),e} 'Y}}

e The optimal estimate for 6 can be found by minimizing for
each Y =y the posterior cost

E {c [é(y), e} ‘v - y}
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Minimum-Mean-Squared-Error (MMSE) Estimation
e Cla, 0] = (a—0)?
e The posterior cost is given by

e{iw)-er =y} - [i]

e The Bayes estimate is given by

Oumse(y) = E {@’Y = Y}
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Example 1: MMSE Estimation

Suppose X and Y are jointly Gaussian random variables
Let the joint pdf be given by

1 1
pror(y) =~ —oxp (s - )TE (s - )
2r|X|2

2
where s = [X} , = ['ux] and ~ = [ Ox PUXZUy}
y Ly poxoy oy

Suppose Y is observed and we want to estimate X
The MMSE estimate of X is

Xuwse(y) = E [X‘ Y = Y]
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Example 1: MMSE Estimation

The conditional distribution of X given Y = y is a Gaussian
RV with mean

g
1ixy = tix + —p(y — py)
Oy

and variance
Ty = (1= )k
Thus the MMSE estimate of X given Y =y is

N o
Xumse(y) = tx + ;XP(Y — fy)
y
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Example 2: MMSE Estimation

Suppose A is a Gaussian RV with mean ;. and known
variance v2

Suppose we observe Y;, i =1,2,..., M such that
Yi=A+ N,

where N;’s are independent Gaussian RVs with mean 0
and known variance o2

Suppose A is independent of the N;’s
The MMSE estimate is given by

ME A1 (y) + p

A -
mmse(Y) ,‘%2 1

where A;(y) = # S ¥
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Minimum-Mean-Absolute-Error (MMAE) Estimation
e Cla,0] =|a— 10

« The Bayes estimate 455 is given by the median of the
posterior density p(0]Y =)

Pr(@<t'Y:y) < Pr(@>t‘Y:y>, t < Oags(y)

Pr(@<t‘Y:y) > Pr(e>t‘Y=y>, t > Oaps(y)

p(OlY =y)

U faps(y)
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Minimum-Mean-Absolute-Error (MMAE) Estimation
e For Pr{X > 0] =1, E[X] = [;° Pr[X > x] dx

e Since [O(y) —©] >0

e{liy) - ol

= /OOOPr [|§(y)—@|>x

:/Pr
o L

=

Y:y} dx

) >x+9(y)‘Y:y] ax

+/ Pr [e<—x+§(y)‘Y—y} dx
0

= / Pr
o(y)

oy)
+

[@ > t‘Y:y} dt
Pr {@ < t‘Y:y] at
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Minimum-Mean-Absolute-Error (MMAE) Estimation
Differentiating £ {\é(y) el ‘Y = y} wrt to A(y)

aéa(wE{'é(y) —er]v -y}

_ ?/ Pr[@>t‘Y—y} it
a0(y) Ja(y)

9 iy
+— / Pr[@<t‘Y:y] dt

= Pr [@ < @(y)‘Y = V] —Pr [@ > é(Y)‘Y = V]

e The derivative is nondecAreasing tendingto —1 as
6(y) — —oc and +1 as 0(y) — oo
e The minimum risk is achieved at the point the derivative

changes sign
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Minimum-Mean-Absolute-Error (MMAE) Estimation
e Thus the MMAE 6,55 is given by any value 6 such that

Pr (e < t‘Y = y> < Pr (@ > t‘Y = y) .t <0ags(y)
Pr (e < t’Y = y) > Pr <e > t‘Y = y) . t>0ags(y)
e Why not the following expression?
Pr (0 < dass(y)|¥ =) = Pr(© > dassy)| ¥~
e Why not the following expression?
Pr <e < GAABS(y)‘Y = y) = Pr (e > éABS(y)‘Y = y)
o MMAE estimation for discrete distributions requires the

more general expression above

26/44



Maximum A Posteriori (MAP) Estimation
e The MAP estimator is given by

Omar(y) = argmax p (9'Y = y)

e It can be obtained as the optimal estimator for the
threshold cost function

[0 ifla—f <A
C[a’e]_{1 ifla— 6] > A

forsmall A >0
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Maximum A Posteriori (MAP) Estimation

e For the threshold cost function, we have’
E {c [é(y), e} ‘Y — y}
_ / Clé(y). o] <0‘Y:y> d9
é(y)—A 0o
/ p(@’Y:y) d0+/ p<9‘Y:y> (o [7}
—0 o(y)+a
00 A(y)+a
/ p(GY:y) d@—[ p(@'Y:y) do
—o0 o(y)—A
O(y)+4
= 1—ﬁ p(@‘Y:y) do
o(y)—A

e The Bayes estimate is obtained by maximizing the integral
in the last equality

"Assume a scalar parameter 6 for illustration
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Maximum A Posteriori (MAP) Estimation

POy =y)

b(y)

o The shaded area is the integral féé((yy))jf p (0‘Y = y> do

« To maximize this integral, the location of (y) should be
chosen to be the value of § which maximizes p(6|Y =)

29/44



Maximum A Posteriori (MAP) Estimation

POy =y)

Omar(y)

e This argument is not airtight as p(6|Y = y) may not be
symmetric at the maximum

e But the MAP estimator is widely used as it is easier to
compute than the MMSE or MMAE estimators
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Maximum Likelihood (ML) Estimation

e The ML estimator is given by

Om(y) = argmax p (Y = y‘é)
0
e |t is the same as the MAP estimator when the prior

probability distribution of © is uniform
e |tis also used when the prior distribution is not known
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Example 1: ML Estimation

e Suppose we observe Y;, i =1,2,..., M such that
Yi ~ N(Ma 02)

where Y;’s are independent, 1 is unknown and o2 is known
e The ML estimate is given by

amc(y) = 4 > i

i=1

Assignment 5
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Example 2: ML Estimation

e Suppose we observe Y;, i =1,2,..., M such that
Yi ~ N(Ma 02)

where Y;’s are independent, both ;. and o2 are unknown
e The ML estimates are given by

. 1
fmc(y) = MZY’

m(y) = MZ — A (y

Assignment 5
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Example 3: ML Estimation

e Suppose we observe Y;, i =1,2,..., M such that
Y; ~ Bernoulli(p)

where Y/’s are independent and p is unknown
e The ML estimate of p is given by

;M
Pu(y) = > i
i=

Assignment 5
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Example 4: ML Estimation
e Suppose we observe Y;, i =1,2,..., M such that
Y; ~ Uniform|0, 6]

where Y;’s are independent and 6 is unknown
e The ML estimate of 6 is given by

A

9ML(y) - maX(Y1aY27- . -;YM—17}/M)

Assignment 5
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Reference

e Chapter 4, An Introduction to Signal Detection and
Estimation, H. V. Poor, Second Edition, Springer Verlag,
1994.
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Parameter Estimation of Random Processes



ML Estimation Requires Conditional Densities

e ML estimation involves maximizing the conditional density
wrt unknown parameters

o Example: Y ~ N (0, 02) where 6 is known and o2 is

unknown
(Y y‘ 9) 1 %%
— fnd 20
p V2ro?

e Suppose the observation is the realization of a random
process _
y(t) = AePs(t — 1) + n(t)

e What is the conditional density of y(t) given A, 6 and 77
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Maximizing Likelihood Ratio for ML Estimation

o Consider Y ~ N (6,0?) where @ is unknown and o2 is

known
1 _(y=0)?

0) = e 22
p(y|0) N

e Let q(y) be the density of a Gaussian with distribution
N(0,02)
1 _A

e 252
2702

a(y) =

!

e The ML estimate of 4 is obtained as

dm(y) = argmaxp(y|s) = argmax PV
o o 9q)

= argmaxL(y|d)
0

where L(y|0) is called the likelihood ratio
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Likelihood Ratio and Hypothesis Testing

» The likelihood ratio L(y|6) is the ML decision statistic for
the following binary hypothesis testing problem

Hy : Y ~N(9,5?)
Hy : Y ~N(0,0?)

where 6 is assumed to be known

e Hp is a dummy hypothesis which makes calculation of the
ML estimator easy for random processes
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Likelihood Ratio of a Signal in AWGN

Let Hs(0) be the hypothesis corresponding the following
received signal

Hs(0) : y(t) = sp(t) + n(t)

where 6 can be a vector parameter
Define a noise-only dummy hypothesis Hy

Define Z and y(t) as follows

Z = <y759>

yi) = () — (y.sp) D)

Isol1?

Z and y~(t) completely characterize y(t)
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Likelihood Ratio of a Signal in AWGN
Under both hypotheses y+(t) is equal to n*(t) where

n(t) = n(t) — (n, 30>“Sz£|li)2

n'(t) is independent of the noise component in Z and has
the same distribution under both hypotheses

n*(t) is irrelevant for this binary hypothesis testing problem

The likelihood ratio of y(t) equals the likelihood ratio of Z
under the following hypothesis testing problem

Hs(0) = Z~N(|so]?, o] soll%)
Ho(0) : Z ~N(0,0%]s0]?)
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Likelihood Ratio of Signals in AWGN
e The likelihood ratio of signals in real AWGN is

Livisn) = ewp (25 [0 - 15

e The likelihood ratio of signals in complex AWGN is

Liyisn) = oxp (25 [Retty.son — 155 )

e Maximizing these likelihood ratios as functions of ¢ results
in the ML estimator
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Thanks for your attention
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