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Motivation



System Model used to Derive Optimal Receivers

Channels(t) y(t)

y(t) = s(t) + n(t)

s(t) Transmitted Signal
y(t) Received Signal
n(t) Noise

Simplified System Model. Does Not Account For
• Propagation Delay
• Carrier Frequency Mismatch Between Transmitter and

Receiver
• Clock Frequency Mismatch Between Transmitter and

Receiver
In short, Lies! Why?
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You want 
answers?
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I want the truth!
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You 
can't 

handle 
the 

truth!

. . . right at the beginning of the course. Now you can.
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Why Study the Simplified System Model?

Channels(t) y(t)

y(t) = s(t) + n(t)

• Receivers estimate propagation delay, carrier frequency
and clock frequency before demodulation

• Once these unknown parameters are estimated, the
simplified system model is valid

• Then why not study parameter estimation first?
• Hypothesis testing is easier to learn than parameter

estimation
• Historical reasons
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Unsimplifying the System Model
Effect of Propagation Delay

• Consider a complex baseband signal

s(t) =
∞∑

n=−∞
bnp(t − nT )

and the corresponding passband signal

sp(t) = Re
[√

2s(t)ej2πfc t
]
.

• After passing through a noisy channel which causes
amplitude scaling and delay, we have

yp(t) = Asp(t − τ) + np(t)

where A is an unknown amplitude, τ is an unknown delay
and np(t) is passband noise

8 / 44



Unsimplifying the System Model
Effect of Propagation Delay

• The delayed passband signal is

sp(t − τ) = Re
[√

2s(t − τ)e j2πfc(t−τ)
]

= Re
[√

2s(t − τ)e jθej2πfc t
]

where θ = −2πfcτ mod 2π. For large fc , θ is modeled as
uniformly distributed over [0,2π].

• The complex baseband representation of the received
signal is then

y(t) = Ae jθs(t − τ) + n(t)

where n(t) is complex Gaussian noise.
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Unsimplifying the System Model
Effect of Carrier Offset

• Frequency of the local oscillator (LO) at the receiver differs
from that of the transmitter

• Suppose the LO frequency at the transmitter is fc

sp(t) = Re
[√

2s(t)e j2πfc t
]
.

• Suppose that the LO frequency at the receiver is fc −∆f
• The received passband signal is

yp(t) = Asp(t − τ) + np(t)

• The complex baseband representation of the received
signal is then

y(t) = Ae j(2π∆ft+θ)s(t − τ) + n(t)
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Unsimplifying the System Model
Effect of Clock Offset

• Frequency of the clock at the receiver differs from that of
the transmitter

• The clock frequency determines the sampling instants at
the matched filter output

• Suppose the symbol rate at the transmitter is 1
T symbols

per second
• Suppose the receiver sampling rate is 1+δ

T symbols per
second where |δ| � 1 and δ may be positive or negative

• The actual sampling instants and ideal sampling instants
will drift apart over time
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The Solution
Estimate the unknown parameters τ , θ, ∆f and δ
Timing Synchronization Estimation of τ
Carrier Synchronization Estimation of θ and ∆f
Clock Synchronization Estimation of δ
Perform demodulation after synchronization
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Parameter Estimation



Parameter Estimation
• Hypothesis testing was about making a choice between

discrete states of nature
• Parameter or point estimation is about choosing from a

continuum of possible states

Example
Consider the complex baseband signal below

y(t) = Ae jθs(t − τ) + n(t)

• The phase θ can take any real value in the interval [0,2π)

• The amplitude A can be any real number
• The delay τ can be any real number
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System Model for Parameter Estimation
• Consider a family of distributions

Y ∼ Pθ, θ ∈ Λ

where the observation vector Y ∈ Γ ⊆ Rn for n ∈ N and
Λ ⊆ Rm is the parameter space

• Example:
Y = A + N

where A is an unknown parameter and N is a standard
Gaussian RV

• The goal of parameter estimation is to find θ given Y
• An estimator is a function from the observation space to

the parameter space

θ̂ : Γ→ Λ
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Which is the Optimal Estimator?
• Assume there is a cost function C which quantifies the

estimation error
C : Λ× Λ→ R

such that C[a, θ] is the cost of estimating the true value of θ
as a

• Examples of cost functions
Squared Error C[a, θ] = (a− θ)2

Absolute Error C[a, θ] = |a− θ|

Threshold Error C[a, θ] =

{
0 if |a− θ| ≤ ∆
1 if |a− θ| > ∆
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Which is the Optimal Estimator?
• With an estimator θ̂ we associate a conditional cost or risk

conditioned on θ

Rθ(θ̂) = Eθ

{
C
[
θ̂(Y), θ

]}
• Suppose that the parameter θ is the realization of a

random variable Θ

• The average risk or Bayes risk is given by

r(θ̂) = E
{

RΘ(θ̂)
}

• The optimal estimator is the one which minimizes the
Bayes risk
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Which is the Optimal Estimator?
• Given that

Rθ(θ̂) = Eθ

{
C
[
θ̂(Y), θ

]}
= E

{
C
[
θ̂(Y),Θ

] ∣∣∣∣Θ = θ

}
the average risk or Bayes risk is given by

r(θ̂) = E
{

C
[
θ̂(Y),Θ

]}
= E

{
E
{

C
[
θ̂(Y),Θ

] ∣∣∣∣Y}}
• The optimal estimate for θ can be found by minimizing for

each Y = y the posterior cost

E
{

C
[
θ̂(y),Θ

] ∣∣∣∣Y = y
}
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Minimum-Mean-Squared-Error (MMSE) Estimation
• C[a, θ] = (a− θ)2

• The posterior cost is given by

E
{

(θ̂(y)−Θ)2
∣∣∣∣Y = y

}
=

[
θ̂(y)

]2

−2θ̂(y)E
{

Θ

∣∣∣∣Y = y
}

+E
{

Θ2
∣∣∣∣Y = y

}
• The Bayes estimate is given by

θ̂MMSE (y) = E
{

Θ

∣∣∣∣Y = y
}
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Example 1: MMSE Estimation
• Suppose X and Y are jointly Gaussian random variables
• Let the joint pdf be given by

pXY (x , y) =
1

2π|Σ|
1
2

exp
(
−1

2
(s− µ)T Σ−1(s− µ)

)

where s =

[
x
y

]
, µ =

[
µx
µy

]
and Σ =

[
σ2

x ρσxσy
ρσxσy σ2

y

]
• Suppose Y is observed and we want to estimate X
• The MMSE estimate of X is

X̂MMSE (y) = E
[
X
∣∣∣∣Y = y

]
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Example 1: MMSE Estimation
• The conditional distribution of X given Y = y is a Gaussian

RV with mean

µX |y = µx +
σx

σy
ρ(y − µy )

and variance
σ2

X |y = (1− ρ2)σ2
x

• Thus the MMSE estimate of X given Y = y is

X̂MMSE (y) = µx +
σx

σy
ρ(y − µy )
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Example 2: MMSE Estimation
• Suppose A is a Gaussian RV with mean µ and known

variance v2

• Suppose we observe Yi , i = 1,2, . . . ,M such that

Yi = A + Ni

where Ni ’s are independent Gaussian RVs with mean 0
and known variance σ2

• Suppose A is independent of the Ni ’s
• The MMSE estimate is given by

ÂMMSE (y) =
Mv2

σ2 Â1(y) + µ

Mv2

σ2 + 1

where Â1(y) = 1
M
∑M

i=1 yi
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Minimum-Mean-Absolute-Error (MMAE) Estimation
• C[a, θ] = |a− θ|
• The Bayes estimate θ̂ABS is given by the median of the

posterior density p(Θ|Y = y)

Pr
(

Θ < t
∣∣∣∣Y = y

)
≤ Pr

(
Θ > t

∣∣∣∣Y = y
)
, t < θ̂ABS(y)

Pr
(

Θ < t
∣∣∣∣Y = y

)
≥ Pr

(
Θ > t

∣∣∣∣Y = y
)
, t > θ̂ABS(y)

t θ̂ABS(y)

p(θ|Y = y)
Pr
(

Θ < t
∣∣∣∣Y = y

)
Pr
(

Θ > t
∣∣∣∣Y = y

)
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Minimum-Mean-Absolute-Error (MMAE) Estimation
• For Pr[X ≥ 0] = 1, E [X ] =

∫∞
0 Pr[X > x ] dx

• Since |θ̂(y)−Θ| ≥ 0

E
{
|θ̂(y)−Θ|

∣∣∣∣Y = y
}

=

∫ ∞
0

Pr
[
|θ̂(y)−Θ| > x

∣∣∣∣Y = y
]

dx

=

∫ ∞
0

Pr
[

Θ > x + θ̂(y)

∣∣∣∣Y = y
]

dx

+

∫ ∞
0

Pr
[

Θ < −x + θ̂(y)

∣∣∣∣Y = y
]

dx

=

∫ ∞
θ̂(y)

Pr
[

Θ > t
∣∣∣∣Y = y

]
dt

+

∫ θ̂(y)

−∞
Pr
[

Θ < t
∣∣∣∣Y = y

]
dt
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Minimum-Mean-Absolute-Error (MMAE) Estimation

Differentiating E
{
|θ̂(y)−Θ|

∣∣∣∣Y = y
}

wrt to θ̂(y)

∂

∂θ̂(y)
E
{
|θ̂(y)−Θ|

∣∣∣∣Y = y
}

=
∂

∂θ̂(y)

∫ ∞
θ̂(y)

Pr
[

Θ > t
∣∣∣∣Y = y

]
dt

+
∂

∂θ̂(y)

∫ θ̂(y)

−∞
Pr
[

Θ < t
∣∣∣∣Y = y

]
dt

= Pr
[

Θ < θ̂(y)

∣∣∣∣Y = y
]
− Pr

[
Θ > θ̂(y)

∣∣∣∣Y = y
]

• The derivative is nondecreasing tending to −1 as
θ̂(y)→ −∞ and +1 as θ̂(y)→∞

• The minimum risk is achieved at the point the derivative
changes sign
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Minimum-Mean-Absolute-Error (MMAE) Estimation
• Thus the MMAE θ̂ABS is given by any value θ such that

Pr
(

Θ < t
∣∣∣∣Y = y

)
≤ Pr

(
Θ > t

∣∣∣∣Y = y
)
, t < θ̂ABS(y)

Pr
(

Θ < t
∣∣∣∣Y = y

)
≥ Pr

(
Θ > t

∣∣∣∣Y = y
)
, t > θ̂ABS(y)

• Why not the following expression?

Pr
(

Θ < θ̂ABS(y)

∣∣∣∣Y = y
)

= Pr
(

Θ ≥ θ̂ABS(y)

∣∣∣∣Y = y
)

• Why not the following expression?

Pr
(

Θ < θ̂ABS(y)

∣∣∣∣Y = y
)

= Pr
(

Θ > θ̂ABS(y)

∣∣∣∣Y = y
)

• MMAE estimation for discrete distributions requires the
more general expression above
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Maximum A Posteriori (MAP) Estimation
• The MAP estimator is given by

θ̂MAP(y) = argmax
θ

p
(
θ

∣∣∣∣Y = y
)

• It can be obtained as the optimal estimator for the
threshold cost function

C[a, θ] =

{
0 if |a− θ| ≤ ∆
1 if |a− θ| > ∆

for small ∆ > 0
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Maximum A Posteriori (MAP) Estimation
• For the threshold cost function, we have1

E
{

C
[
θ̂(y),Θ

] ∣∣∣∣Y = y
}

=

∫ ∞
−∞

C[θ̂(y), θ]p
(
θ

∣∣∣∣Y = y
)

dθ

=

∫ θ̂(y)−∆

−∞
p
(
θ

∣∣∣∣Y = y
)

dθ +

∫ ∞
θ̂(y)+∆

p
(
θ

∣∣∣∣Y = y
)

dθ

=

∫ ∞
−∞

p
(
θ

∣∣∣∣Y = y
)

dθ −
∫ θ̂(y)+∆

θ̂(y)−∆
p
(
θ

∣∣∣∣Y = y
)

dθ

= 1−
∫ θ̂(y)+∆

θ̂(y)−∆
p
(
θ

∣∣∣∣Y = y
)

dθ

• The Bayes estimate is obtained by maximizing the integral
in the last equality

1Assume a scalar parameter θ for illustration
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Maximum A Posteriori (MAP) Estimation

θ̂(y)

p(θ|Y = y) ∫ θ̂(y)+∆

θ̂(y)−∆
p
(
θ

∣∣∣∣Y = y
)

• The shaded area is the integral
∫ θ̂(y)+∆

θ̂(y)−∆
p
(
θ

∣∣∣∣Y = y
)

dθ

• To maximize this integral, the location of θ̂(y) should be
chosen to be the value of θ which maximizes p(θ|Y = y)
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Maximum A Posteriori (MAP) Estimation

θ̂MAP(y)

p(θ|Y = y) ∫ θ̂(y)+∆

θ̂(y)−∆
p
(
θ

∣∣∣∣Y = y
)

• This argument is not airtight as p(θ|Y = y) may not be
symmetric at the maximum

• But the MAP estimator is widely used as it is easier to
compute than the MMSE or MMAE estimators
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Maximum Likelihood (ML) Estimation
• The ML estimator is given by

θ̂ML(y) = argmax
θ

p
(

Y = y
∣∣∣∣θ)

• It is the same as the MAP estimator when the prior
probability distribution of Θ is uniform

• It is also used when the prior distribution is not known
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Example 1: ML Estimation
• Suppose we observe Yi , i = 1,2, . . . ,M such that

Yi ∼ N (µ, σ2)

where Yi ’s are independent, µ is unknown and σ2 is known
• The ML estimate is given by

µ̂ML(y) =
1
M

M∑
i=1

yi

Assignment 5
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Example 2: ML Estimation
• Suppose we observe Yi , i = 1,2, . . . ,M such that

Yi ∼ N (µ, σ2)

where Yi ’s are independent, both µ and σ2 are unknown
• The ML estimates are given by

µ̂ML(y) =
1
M

M∑
i=1

yi

σ̂2
ML(y) =

1
M

M∑
i=1

(yi − µ̂ML(y))2

Assignment 5
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Example 3: ML Estimation
• Suppose we observe Yi , i = 1,2, . . . ,M such that

Yi ∼ Bernoulli(p)

where Yi ’s are independent and p is unknown
• The ML estimate of p is given by

p̂ML(y) =
1
M

M∑
i=1

yi

Assignment 5
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Example 4: ML Estimation
• Suppose we observe Yi , i = 1,2, . . . ,M such that

Yi ∼ Uniform[0, θ]

where Yi ’s are independent and θ is unknown
• The ML estimate of θ is given by

θ̂ML(y) = max (y1, y2, . . . , yM−1, yM)

Assignment 5
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Reference
• Chapter 4, An Introduction to Signal Detection and

Estimation, H. V. Poor, Second Edition, Springer Verlag,
1994.
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Parameter Estimation of Random Processes



ML Estimation Requires Conditional Densities
• ML estimation involves maximizing the conditional density

wrt unknown parameters
• Example: Y ∼ N (θ, σ2) where θ is known and σ2 is

unknown

p
(

Y = y
∣∣∣∣θ) =

1√
2πσ2

e−
(y−θ)2

2σ2

• Suppose the observation is the realization of a random
process

y(t) = Ae jθs(t − τ) + n(t)

• What is the conditional density of y(t) given A, θ and τ?
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Maximizing Likelihood Ratio for ML Estimation
• Consider Y ∼ N (θ, σ2) where θ is unknown and σ2 is

known

p(y |θ) =
1√

2πσ2
e−

(y−θ)2

2σ2

• Let q(y) be the density of a Gaussian with distribution
N (0, σ2)

q(y) =
1√

2πσ2
e−

y2

2σ2

• The ML estimate of θ is obtained as

θ̂ML(y) = argmax
θ

p(y |θ) = argmax
θ

p(y |θ)

q(y)

= argmax
θ

L(y |θ)

where L(y |θ) is called the likelihood ratio
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Likelihood Ratio and Hypothesis Testing
• The likelihood ratio L(y |θ) is the ML decision statistic for

the following binary hypothesis testing problem

H1 : Y ∼ N (θ, σ2)
H0 : Y ∼ N (0, σ2)

where θ is assumed to be known
• H0 is a dummy hypothesis which makes calculation of the

ML estimator easy for random processes
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Likelihood Ratio of a Signal in AWGN
• Let Hs(θ) be the hypothesis corresponding the following

received signal

Hs(θ) : y(t) = sθ(t) + n(t)

where θ can be a vector parameter
• Define a noise-only dummy hypothesis H0

H0 : y(t) = n(t)

• Define Z and y⊥(t) as follows

Z = 〈y , sθ〉

y⊥(t) = y(t)− 〈y , sθ〉
sθ(t)
‖sθ‖2

• Z and y⊥(t) completely characterize y(t)
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Likelihood Ratio of a Signal in AWGN
• Under both hypotheses y⊥(t) is equal to n⊥(t) where

n⊥(t) = n(t)− 〈n, sθ〉
sθ(t)
‖sθ‖2

• n⊥(t) is independent of the noise component in Z and has
the same distribution under both hypotheses

• n⊥(t) is irrelevant for this binary hypothesis testing problem
• The likelihood ratio of y(t) equals the likelihood ratio of Z

under the following hypothesis testing problem

Hs(θ) : Z ∼ N (‖sθ‖2, σ2‖sθ‖2)
H0(θ) : Z ∼ N (0, σ2‖sθ‖2)
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Likelihood Ratio of Signals in AWGN
• The likelihood ratio of signals in real AWGN is

L(y |sθ) = exp
(

1
σ2

[
〈y , sθ〉 −

‖sθ‖2

2

])
• The likelihood ratio of signals in complex AWGN is

L(y |sθ) = exp
(

1
σ2

[
Re(〈y , sθ〉)−

‖sθ‖2

2

])
• Maximizing these likelihood ratios as functions of θ results

in the ML estimator
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Thanks for your attention
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