Parameter Estimation

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

October 25, 2012

Motivation

System Model used to Derive Optimal Receivers

$$s(t) \longrightarrow \text{Channel} \longrightarrow y(t)$$

y(t) = s(t) + n(t)

- s(t) Transmitted Signal
- y(t) Received Signal
- n(t) Noise

Simplified System Model. Does Not Account For

- Propagation Delay
- Carrier Frequency Mismatch Between Transmitter and Receiver
- Clock Frequency Mismatch Between Transmitter and Receiver

In short, Lies! Why?

A Few Good Men @ 1992

... right at the beginning of the course. Now you can.

Why Study the Simplified System Model?

$$s(t) \longrightarrow \text{Channel} \longrightarrow y(t)$$

y(t) = s(t) + n(t)

- Receivers estimate propagation delay, carrier frequency and clock frequency before demodulation
- Once these unknown parameters are estimated, the simplified system model is valid
- Then why not study parameter estimation first?
 - Hypothesis testing is easier to learn than parameter
 estimation
 - Historical reasons

Unsimplifying the System Model

Effect of Propagation Delay

Consider a complex baseband signal

$$s(t) = \sum_{n=-\infty}^{\infty} b_n p(t - nT)$$

and the corresponding passband signal

$$s_{p}(t) = \operatorname{\mathsf{Re}}\left[\sqrt{2}s(t)e^{j2\pi f_{c}t}
ight].$$

 After passing through a noisy channel which causes amplitude scaling and delay, we have

$$y_{p}(t) = As_{p}(t-\tau) + n_{p}(t)$$

where A is an unknown amplitude, τ is an unknown delay and $n_{\rho}(t)$ is passband noise

Unsimplifying the System Model

Effect of Propagation Delay

The delayed passband signal is

$$s_{p}(t-\tau) = \operatorname{Re}\left[\sqrt{2}s(t-\tau)e^{j2\pi f_{c}(t-\tau)}\right]$$
$$= \operatorname{Re}\left[\sqrt{2}s(t-\tau)e^{j\theta}e^{j2\pi f_{c}t}\right]$$

where $\theta = -2\pi f_c \tau \mod 2\pi$. For large f_c , θ is modeled as uniformly distributed over $[0, 2\pi]$.

• The complex baseband representation of the received signal is then

$$y(t) = Ae^{j\theta}s(t-\tau) + n(t)$$

where n(t) is complex Gaussian noise.

Unsimplifying the System Model Effect of Carrier Offset

- Frequency of the local oscillator (LO) at the receiver differs from that of the transmitter
- Suppose the LO frequency at the transmitter is f_c

$$s_{
ho}(t) = {\sf Re}\left[\sqrt{2}s(t)e^{j2\pi f_{c}t}
ight]$$

- Suppose that the LO frequency at the receiver is $f_c \Delta f$
- The received passband signal is

$$y_p(t) = As_p(t-\tau) + n_p(t)$$

• The complex baseband representation of the received signal is then

$$y(t) = Ae^{j(2\pi\Delta ft+\theta)}s(t-\tau) + n(t)$$

Unsimplifying the System Model Effect of Clock Offset

- Frequency of the clock at the receiver differs from that of the transmitter
- The clock frequency determines the sampling instants at the matched filter output
- Suppose the symbol rate at the transmitter is $\frac{1}{7}$ symbols per second
- Suppose the receiver sampling rate is $\frac{1+\delta}{T}$ symbols per second where $|\delta| \ll 1$ and δ may be positive or negative
- The actual sampling instants and ideal sampling instants will drift apart over time

The Solution

Estimate the unknown parameters τ , θ , Δf and δ Timing Synchronization Estimation of τ Carrier Synchronization Estimation of θ and Δf Clock Synchronization Estimation of δ Perform demodulation after synchronization

Parameter Estimation

Parameter Estimation

- Hypothesis testing was about making a choice between discrete states of nature
- Parameter or point estimation is about choosing from a continuum of possible states

Example

Consider the complex baseband signal below

$$y(t) = Ae^{j\theta}s(t-\tau) + n(t)$$

- The phase θ can take any real value in the interval $[0, 2\pi)$
- The amplitude A can be any real number
- The delay τ can be any real number

System Model for Parameter Estimation

• Consider a family of distributions

$$\mathbf{Y} \sim \mathbf{P}_{\theta}, \quad \theta \in \Lambda$$

where the observation vector $\mathbf{Y} \in \Gamma \subseteq \mathbb{R}^n$ for $n \in \mathbb{N}$ and $\Lambda \subseteq \mathbb{R}^m$ is the parameter space

• Example:

$$Y = A + N$$

where A is an unknown parameter and N is a standard Gaussian RV

- The goal of parameter estimation is to find θ given Y
- An estimator is a function from the observation space to the parameter space

$$\hat{\theta}:\Gamma\to\Lambda$$

Which is the Optimal Estimator?

• Assume there is a cost function *C* which quantifies the estimation error

 ${\boldsymbol{\mathcal{C}}}:\Lambda\times\Lambda\to\mathbb{R}$

such that $C[a, \theta]$ is the cost of estimating the true value of θ as a

- Examples of cost functions
 - Squared Error $C[a, \theta] = (a \theta)^2$ Absolute Error $C[a, \theta] = |a - \theta|$ Threshold Error $C[a, \theta] = \begin{cases} 0 & \text{if } |a - \theta| \le \Delta \\ 1 & \text{if } |a - \theta| > \Delta \end{cases}$

Which is the Optimal Estimator?

- With an estimator $\hat{\theta}$ we associate a conditional cost or risk conditioned on θ

$$m{ extsf{R}}_{ heta}(\hat{ heta}) = m{ extsf{E}}_{ heta}\left\{m{ extsf{C}}\left[\hat{ heta}(m{ extsf{Y}}), heta
ight]
ight\}$$

- Suppose that the parameter θ is the realization of a random variable Θ
- The average risk or Bayes risk is given by

$$r(\hat{ heta}) = E\left\{R_{\Theta}(\hat{ heta})
ight\}$$

 The optimal estimator is the one which minimizes the Bayes risk

Which is the Optimal Estimator?

Given that

$$\mathcal{R}_{ heta}(\hat{ heta}) = \mathcal{E}_{ heta}\left\{\mathcal{C}\left[\hat{ heta}(\mathbf{Y}), heta
ight\}
ight\} = \mathcal{E}\left\{\mathcal{C}\left[\hat{ heta}(\mathbf{Y}), \Theta
ight]\left|\Theta = heta
ight\}
ight.$$

the average risk or Bayes risk is given by

$$r(\hat{\theta}) = E\left\{C\left[\hat{\theta}(\mathbf{Y}), \Theta\right]\right\}$$
$$= E\left\{E\left\{E\left\{C\left[\hat{\theta}(\mathbf{Y}), \Theta\right] \middle| \mathbf{Y}\right\}\right\}\right\}$$

 The optimal estimate for θ can be found by minimizing for each Y = y the posterior cost

$$E\left\{C\left[\hat{ heta}(\mathbf{y}),\Theta\right]\middle|\mathbf{Y}=\mathbf{y}
ight\}$$

Minimum-Mean-Squared-Error (MMSE) Estimation

•
$$C[a, \theta] = (a - \theta)^2$$

• The posterior cost is given by

$$E\left\{ (\hat{\theta}(\mathbf{y}) - \Theta)^2 \middle| \mathbf{Y} = \mathbf{y} \right\} = \left[\hat{\theta}(\mathbf{y}) \right]^2$$
$$-2\hat{\theta}(\mathbf{y})E\left\{ \Theta \middle| \mathbf{Y} = \mathbf{y} \right\}$$
$$+E\left\{ \Theta^2 \middle| \mathbf{Y} = \mathbf{y} \right\}$$

• The Bayes estimate is given by

$$\hat{ heta}_{MMSE}(\mathbf{y}) = E\left\{\Theta \middle| \mathbf{Y} = \mathbf{y}
ight\}$$

Example 1: MMSE Estimation

- Suppose X and Y are jointly Gaussian random variables
- Let the joint pdf be given by

$$p_{XY}(x,y) = \frac{1}{2\pi|\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\mathbf{s}-\mu)^T \Sigma^{-1}(\mathbf{s}-\mu)\right)$$

where
$$\mathbf{s} = \begin{bmatrix} x \\ y \end{bmatrix}$$
, $\mu = \begin{bmatrix} \mu_x \\ \mu_y \end{bmatrix}$ and $\Sigma = \begin{bmatrix} \sigma_x^2 & \rho \sigma_x \sigma_y \\ \rho \sigma_x \sigma_y & \sigma_y^2 \end{bmatrix}$

- Suppose Y is observed and we want to estimate X
- The MMSE estimate of X is

$$\hat{X}_{MMSE}(y) = E\left[X\middle|Y=y
ight]$$

Example 1: MMSE Estimation

• The conditional distribution of *X* given Y = y is a Gaussian RV with mean

$$\mu_{X|y} = \mu_x + \frac{\sigma_x}{\sigma_y} \rho(y - \mu_y)$$

and variance

$$\sigma_{X|y}^2 = (1 - \rho^2)\sigma_x^2$$

• Thus the MMSE estimate of *X* given Y = y is

$$\hat{X}_{MMSE}(y) = \mu_x + \frac{\sigma_x}{\sigma_y} \rho(y - \mu_y)$$

Example 2: MMSE Estimation

- Suppose A is a Gaussian RV with mean μ and known variance v^2
- Suppose we observe Y_i , i = 1, 2, ..., M such that

$$Y_i = A + N_i$$

where N_i 's are independent Gaussian RVs with mean 0 and known variance σ^2

- Suppose A is independent of the N_i's
- The MMSE estimate is given by

$$\hat{A}_{MMSE}(\mathbf{y}) = rac{rac{Mv^2}{\sigma^2}\hat{A}_1(\mathbf{y}) + \mu}{rac{Mv^2}{\sigma^2} + 1}$$

where $\hat{A}_1(\mathbf{y}) = \frac{1}{M} \sum_{i=1}^{M} y_i$

Minimum-Mean-Absolute-Error (MMAE) Estimation

•
$$C[a, \theta] = |a - \theta|$$

The Bayes estimate θ̂_{ABS} is given by the median of the posterior density p(Θ|Y = y)

$$\begin{split} & \mathsf{Pr}\left(\Theta < t \,\middle|\, \mathbf{Y} = \mathbf{y}\right) &\leq & \mathsf{Pr}\left(\Theta > t \,\middle|\, \mathbf{Y} = \mathbf{y}\right), \ t < \hat{\theta}_{ABS}(\mathbf{y}) \\ & \mathsf{Pr}\left(\Theta < t \,\middle|\, \mathbf{Y} = \mathbf{y}\right) &\geq & \mathsf{Pr}\left(\Theta > t \,\middle|\, \mathbf{Y} = \mathbf{y}\right), \ t > \hat{\theta}_{ABS}(\mathbf{y}) \end{split}$$

Minimum-Mean-Absolute-Error (MMAE) Estimation

• For $\Pr[X \ge 0] = 1$, $E[X] = \int_0^\infty \Pr[X > x] \, dx$

• Since $|\hat{\theta}(\mathbf{y}) - \Theta| \ge 0$

$$E\left\{ \left| \hat{\theta}(\mathbf{y}) - \Theta \right| \middle| \mathbf{Y} = \mathbf{y} \right\}$$

= $\int_{0}^{\infty} \Pr\left[\left| \hat{\theta}(\mathbf{y}) - \Theta \right| > x \middle| \mathbf{Y} = \mathbf{y} \right] dx$
= $\int_{0}^{\infty} \Pr\left[\Theta > x + \hat{\theta}(\mathbf{y}) \middle| \mathbf{Y} = \mathbf{y} \right] dx$
+ $\int_{0}^{\infty} \Pr\left[\Theta < -x + \hat{\theta}(\mathbf{y}) \middle| \mathbf{Y} = \mathbf{y} \right] dx$
= $\int_{\hat{\theta}(\mathbf{y})}^{\infty} \Pr\left[\Theta > t \middle| \mathbf{Y} = \mathbf{y} \right] dt$
+ $\int_{-\infty}^{\hat{\theta}(\mathbf{y})} \Pr\left[\Theta < t \middle| \mathbf{Y} = \mathbf{y} \right] dt$

Minimum-Mean-Absolute-Error (MMAE) Estimation Differentiating $E\left\{ |\hat{\theta}(\mathbf{y}) - \Theta| \middle| \mathbf{Y} = \mathbf{y} \right\}$ wrt to $\hat{\theta}(\mathbf{y})$ $\frac{\partial}{\partial \hat{\theta}(\mathbf{y})} E\left\{ \left| \hat{\theta}(\mathbf{y}) - \Theta \right| \middle| \mathbf{Y} = \mathbf{y} \right\}$ $= \frac{\partial}{\partial \hat{\theta}(\mathbf{v})} \int_{\hat{\theta}(\mathbf{v})}^{\infty} \Pr\left[\Theta > t \middle| \mathbf{Y} = \mathbf{y} \right] dt$ $+\frac{\partial}{\partial \hat{\theta}(\mathbf{y})} \int_{-\infty}^{\hat{\theta}(\mathbf{y})} \Pr\left[\Theta < t \middle| \mathbf{Y} = \mathbf{y}\right] dt$ $= \mathsf{Pr}\left[\Theta < \hat{\theta}(\mathbf{y}) \middle| \mathbf{Y} = \mathbf{y} \right] - \mathsf{Pr}\left[\Theta > \hat{\theta}(\mathbf{y}) \middle| \mathbf{Y} = \mathbf{y} \right]$

- The derivative is nondecreasing tending to -1 as $\hat{\theta}(\mathbf{y}) \rightarrow -\infty$ and +1 as $\hat{\theta}(\mathbf{y}) \rightarrow \infty$
- The minimum risk is achieved at the point the derivative changes sign

Minimum-Mean-Absolute-Error (MMAE) Estimation

• Thus the MMAE $\hat{\theta}_{ABS}$ is given by any value θ such that

$$\begin{aligned} & \mathsf{Pr}\left(\Theta < t \middle| \mathbf{Y} = \mathbf{y}\right) &\leq & \mathsf{Pr}\left(\Theta > t \middle| \mathbf{Y} = \mathbf{y}\right), \ t < \hat{\theta}_{ABS}(\mathbf{y}) \\ & \mathsf{Pr}\left(\Theta < t \middle| \mathbf{Y} = \mathbf{y}\right) &\geq & \mathsf{Pr}\left(\Theta > t \middle| \mathbf{Y} = \mathbf{y}\right), \ t > \hat{\theta}_{ABS}(\mathbf{y}) \end{aligned}$$

• Why not the following expression?

$$\Pr\left(\Theta < \hat{\theta}_{ABS}(\mathbf{y}) \middle| \mathbf{Y} = \mathbf{y}\right) = \Pr\left(\Theta \ge \hat{\theta}_{ABS}(\mathbf{y}) \middle| \mathbf{Y} = \mathbf{y}\right)$$

• Why not the following expression?

$$\mathsf{Pr}\left(\Theta < \hat{\theta}_{ABS}(\mathbf{y}) \middle| \mathbf{Y} = \mathbf{y}\right) = \mathsf{Pr}\left(\Theta > \hat{\theta}_{ABS}(\mathbf{y}) \middle| \mathbf{Y} = \mathbf{y}\right)$$

MMAE estimation for discrete distributions requires the more general expression above

• The MAP estimator is given by

$$\hat{ heta}_{MAP}(\mathbf{y}) = \operatorname*{argmax}_{ heta} p\left(heta \middle| \mathbf{Y} = \mathbf{y}
ight)$$

It can be obtained as the optimal estimator for the threshold cost function

$$C[a, \theta] = \begin{cases} 0 & \text{if } |a - \theta| \le \Delta \\ 1 & \text{if } |a - \theta| > \Delta \end{cases}$$

for small $\Delta > 0$

• For the threshold cost function, we have¹

$$\begin{split} E\left\{C\left[\hat{\theta}(\mathbf{y}),\Theta\right] \middle| \mathbf{Y} = \mathbf{y}\right\} \\ &= \int_{-\infty}^{\infty} C[\hat{\theta}(\mathbf{y}),\theta] p\left(\theta \middle| \mathbf{Y} = \mathbf{y}\right) d\theta \\ &= \int_{-\infty}^{\hat{\theta}(\mathbf{y})-\Delta} p\left(\theta \middle| \mathbf{Y} = \mathbf{y}\right) d\theta + \int_{\hat{\theta}(\mathbf{y})+\Delta}^{\infty} p\left(\theta \middle| \mathbf{Y} = \mathbf{y}\right) d\theta \\ &= \int_{-\infty}^{\infty} p\left(\theta \middle| \mathbf{Y} = \mathbf{y}\right) d\theta - \int_{\hat{\theta}(\mathbf{y})-\Delta}^{\hat{\theta}(\mathbf{y})+\Delta} p\left(\theta \middle| \mathbf{Y} = \mathbf{y}\right) d\theta \\ &= 1 - \int_{\hat{\theta}(\mathbf{y})-\Delta}^{\hat{\theta}(\mathbf{y})+\Delta} p\left(\theta \middle| \mathbf{Y} = \mathbf{y}\right) d\theta \end{split}$$

 The Bayes estimate is obtained by maximizing the integral in the last equality

¹Assume a scalar parameter θ for illustration

- The shaded area is the integral $\int_{\hat{\theta}(\mathbf{y})-\Delta}^{\hat{\theta}(\mathbf{y})+\Delta} p\left(\theta \middle| \mathbf{Y} = \mathbf{y}\right) d\theta$
- To maximize this integral, the location of θ̂(y) should be chosen to be the value of θ which maximizes p(θ|Y = y)

- This argument is not airtight as *p*(θ|**Y** = **y**) may not be symmetric at the maximum
- But the MAP estimator is widely used as it is easier to compute than the MMSE or MMAE estimators

Maximum Likelihood (ML) Estimation

• The ML estimator is given by

$$\hat{ heta}_{\textit{ML}}(\mathbf{y}) = rgmax_{ heta} \rho\left(\mathbf{Y} = \mathbf{y} \middle| heta
ight)$$

- It is the same as the MAP estimator when the prior probability distribution of ⊖ is uniform
- It is also used when the prior distribution is not known

Example 1: ML Estimation

• Suppose we observe Y_i , i = 1, 2, ..., M such that

 $Y_i \sim \mathcal{N}(\mu, \sigma^2)$

where Y_i 's are independent, μ is unknown and σ^2 is known

• The ML estimate is given by

$$\hat{\mu}_{ML}(\mathbf{y}) = \frac{1}{M} \sum_{i=1}^{M} y_i$$

Assignment 5

Example 2: ML Estimation

• Suppose we observe Y_i , i = 1, 2, ..., M such that

 $Y_i \sim \mathcal{N}(\mu, \sigma^2)$

where Y_i 's are independent, both μ and σ^2 are unknown • The ML estimates are given by

$$\hat{\mu}_{ML}(\mathbf{y}) = \frac{1}{M} \sum_{i=1}^{M} y_i$$
$$\hat{\sigma}_{ML}^2(\mathbf{y}) = \frac{1}{M} \sum_{i=1}^{M} (y_i - \hat{\mu}_{ML}(\mathbf{y}))^2$$

Assignment 5

Example 3: ML Estimation

• Suppose we observe Y_i , i = 1, 2, ..., M such that

 $Y_i \sim \text{Bernoulli}(p)$

where Y_i 's are independent and p is unknown

• The ML estimate of *p* is given by

$$\hat{p}_{ML}(\mathbf{y}) = \frac{1}{M} \sum_{i=1}^{M} y_i$$

Assignment 5

Example 4: ML Estimation

• Suppose we observe Y_i , i = 1, 2, ..., M such that

 $Y_i \sim \text{Uniform}[0, \theta]$

where Y_i 's are independent and θ is unknown

• The ML estimate of θ is given by

$$\hat{\theta}_{ML}(\mathbf{y}) = \max(y_1, y_2, \dots, y_{M-1}, y_M)$$
Assignment 5

Reference

 Chapter 4, An Introduction to Signal Detection and Estimation, H. V. Poor, Second Edition, Springer Verlag, 1994.

Parameter Estimation of Random Processes

ML Estimation Requires Conditional Densities

- ML estimation involves maximizing the conditional density wrt unknown parameters
- Example: $Y \sim \mathcal{N}(\theta, \sigma^2)$ where θ is known and σ^2 is unknown

$$\rho\left(Y=y\middle|\theta\right)=\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(y-\theta)^2}{2\sigma^2}}$$

Suppose the observation is the realization of a random process

$$y(t) = Ae^{j\theta}s(t-\tau) + n(t)$$

• What is the conditional density of y(t) given A, θ and τ ?

Maximizing Likelihood Ratio for ML Estimation

• Consider $Y \sim \mathcal{N}(\theta, \sigma^2)$ where θ is unknown and σ^2 is known

$$p(y| heta) = rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{(y- heta)^2}{2\sigma^2}}$$

• Let q(y) be the density of a Gaussian with distribution $\mathcal{N}(\mathbf{0},\sigma^2)$

$$q(y) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{y^2}{2\sigma^2}}$$

• The ML estimate of θ is obtained as

$$\hat{\theta}_{ML}(y) = rgmax_{ heta} p(y| heta) = rgmax_{ heta} rac{p(y| heta)}{q(y)} = rgmax_{ heta} L(y| heta)$$

where $L(y|\theta)$ is called the likelihood ratio

Likelihood Ratio and Hypothesis Testing

 The likelihood ratio L(y|θ) is the ML decision statistic for the following binary hypothesis testing problem

$$\begin{array}{rcl} H_1 & : & Y \sim \mathcal{N}(\theta, \sigma^2) \\ H_0 & : & Y \sim \mathcal{N}(\mathbf{0}, \sigma^2) \end{array}$$

where $\boldsymbol{\theta}$ is assumed to be known

• *H*₀ is a dummy hypothesis which makes calculation of the ML estimator easy for random processes

Likelihood Ratio of a Signal in AWGN

 Let H_s(θ) be the hypothesis corresponding the following received signal

$$H_{s}(\theta)$$
 : $y(t) = s_{\theta}(t) + n(t)$

where θ can be a vector parameter

Define a noise-only dummy hypothesis H₀

$$H_0 : y(t) = n(t)$$

• Define Z and $y^{\perp}(t)$ as follows

$$\begin{array}{lll} Z &=& \langle y, s_{\theta} \rangle \\ y^{\perp}(t) &=& y(t) - \langle y, s_{\theta} \rangle \frac{s_{\theta}(t)}{\|s_{\theta}\|^2} \end{array}$$

• Z and $y^{\perp}(t)$ completely characterize y(t)

Likelihood Ratio of a Signal in AWGN

• Under both hypotheses $y^{\perp}(t)$ is equal to $n^{\perp}(t)$ where

$$n^{\perp}(t) = n(t) - \langle n, s_{ heta}
angle rac{s_{ heta}(t)}{\|s_{ heta}\|^2}$$

- n[⊥](t) is independent of the noise component in Z and has the same distribution under both hypotheses
- $n^{\perp}(t)$ is irrelevant for this binary hypothesis testing problem
- The likelihood ratio of *y*(*t*) equals the likelihood ratio of *Z* under the following hypothesis testing problem

$$\begin{array}{lll} \textit{H}_{s}(\theta) & : & \textit{Z} \sim \mathcal{N}(\|\textit{s}_{\theta}\|^{2}, \sigma^{2}\|\textit{s}_{\theta}\|^{2}) \\ \textit{H}_{0}(\theta) & : & \textit{Z} \sim \mathcal{N}(0, \sigma^{2}\|\textit{s}_{\theta}\|^{2}) \end{array}$$

Likelihood Ratio of Signals in AWGN

• The likelihood ratio of signals in real AWGN is

$$L(y|s_{ heta}) = \exp\left(rac{1}{\sigma^2}\left[\langle y, s_{ heta}
angle - rac{\|s_{ heta}\|^2}{2}
ight]
ight)$$

• The likelihood ratio of signals in complex AWGN is

$$L(y|s_{ heta}) = \exp\left(rac{1}{\sigma^2}\left[\operatorname{\mathsf{Re}}(\langle y, s_{ heta}
angle) - rac{\|s_{ heta}\|^2}{2}
ight]
ight)$$

 Maximizing these likelihood ratios as functions of θ results in the ML estimator Thanks for your attention