EE 703: Digital Message Transmission
 Instructor: Saravanan Vijayakumaran
 Indian Institute of Technology Bombay
 Autumn 2013

Assignment 4

1. A complex random vector $\mathbf{Z}=\mathbf{X}+j \mathbf{Y}$ is said to a complex Gaussian vector if \mathbf{X} and \mathbf{Y} are jointly Gaussian vectors. In other words, \mathbf{Z} is a complex Gaussian vector if the components of $\tilde{\mathbf{Z}}$ are jointly Gaussian where

$$
\tilde{\mathbf{Z}}=\left[\begin{array}{l}
\mathbf{X} \\
\mathbf{Y}
\end{array}\right] .
$$

Prove that $\mathbf{U}=e^{j \phi} \mathbf{Z}$ is a complex Gaussian vector when \mathbf{Z} is a complex Gaussian vector by showing that the components of the following vector are jointly Gaussian.

$$
\tilde{\mathbf{U}}=\left[\begin{array}{l}
\operatorname{Re}\left(e^{j \phi} \mathbf{Z}\right) \\
\operatorname{Im}\left(e^{j \phi} \mathbf{Z}\right)
\end{array}\right]=\left[\begin{array}{l}
\mathbf{X} \cos \phi-\mathbf{Y} \sin \phi \\
\mathbf{X} \sin \phi+\mathbf{Y} \cos \phi
\end{array}\right]
$$

Hint: To show that the components of $\tilde{\mathbf{U}}$ are jointly Gaussian, show that for any a_{i} 's and b_{i} 's not all of which are zero

$$
\sum_{i=1}^{n} a_{i}\left(X_{i} \cos \phi-Y_{i} \sin \phi\right)+\sum_{i=1}^{n} b_{i}\left(X_{i} \sin \phi+Y_{i} \cos \phi\right)
$$

is a Gaussian random variable. Think about when it can fail to be a Gaussian random variable and arrive at a contradiction.
2. Let $\psi_{1}(t), \psi_{2}(t), \ldots, \psi_{K}(t)$ be a complex orthonormal basis. Let $n(t)=n_{c}(t)+j n_{s}(t)$ be complex white Gaussian noise with PSD $2 \sigma^{2}$. Then $n_{c}(t)$ and $n_{s}(t)$ are independent real WGN processes with PSD σ^{2}. Consider the projection of $n(t)$ onto the orthonormal basis

$$
\mathbf{N}=\left[\begin{array}{c}
\left\langle n, \psi_{1}\right\rangle \\
\vdots \\
\left\langle n, \psi_{K}\right\rangle
\end{array}\right] .
$$

Show that \mathbf{N} is a complex Gaussian vector i.e. the components of the following vector are jointly Gaussian.

$$
\tilde{\mathbf{N}}=\left[\begin{array}{c}
\operatorname{Re}\left(\left\langle n, \psi_{1}\right\rangle\right) \\
\vdots \\
\operatorname{Re}\left(\left\langle n, \psi_{K}\right\rangle\right) \\
\operatorname{Im}\left(\left\langle n, \psi_{1}\right\rangle\right) \\
\vdots \\
\operatorname{Im}\left(\left\langle n, \psi_{K}\right\rangle\right)
\end{array}\right] .
$$

Hint: Let $\psi_{i}(t)=\alpha_{i}(t)+j \beta_{i}(t)$. Let

$$
\begin{aligned}
X_{i} & =\operatorname{Re}\left(\left\langle n, \psi_{i}\right\rangle\right)=\left\langle n_{c}, \alpha_{i}\right\rangle+\left\langle n_{s}, \beta_{i}\right\rangle \\
Y_{i} & =\operatorname{Im}\left(\left\langle n, \psi_{i}\right\rangle\right)=\left\langle n_{s}, \alpha_{i}\right\rangle-\left\langle n_{c}, \beta_{i}\right\rangle .
\end{aligned}
$$

To show that the components of $\tilde{\mathbf{N}}$ are jointly Gaussian, show that for any a_{i} 's and b_{i} 's not all of which are zero

$$
\sum_{i=1}^{n} a_{i} X_{i}+\sum_{i=1}^{n} b_{i} Y_{i}
$$

is a Gaussian random variable. Think about when it can fail to be a Gaussian random variable and arrive at a contradiction.

