EE 703: Digital Message Transmission

Instructor: Saravanan Vijayakumaran
Indian Institute of Technology Bombay Autumn 2013

Quiz 1: 12 points +3 bonus points

The last question will be graded only if the first three questions are answered correctly.

1. [4 points] Consider a passband signal $y_{p}(t)$ centered at $\pm f_{c}$ given by

$$
y_{p}(t)=\underbrace{\sqrt{2} y_{c}(t) \cos 2 \pi f_{c} t}_{z_{i}(t)}-\underbrace{\sqrt{2} y_{s}(t) \sin 2 \pi f_{c} t}_{z_{q}(t)}
$$

Show that $z_{i}(t)$ and $z_{q}(t)$ are orthogonal.
2. [4 points] Let $p(t)=I_{[0,1)}(t)$ be a pulse of unit amplitude and duration. Find an orthonormal basis for the following signals.

$$
\begin{aligned}
s_{1}(t) & =p(t)+j p(t-1) \\
s_{2}(t) & =p(t)-j p(t-1) \\
s_{3}(t) & =p(t)+j p(t)
\end{aligned}
$$

Give the signal space representation of $s_{1}(t), s_{2}(t), s_{3}(t)$ in terms of the orthonormal basis derived.

3. [4 points] Consider a random bit X which is equally likely to be 0 or 1 . It is passed through a cascade of two binary symmetric channels each having crossover probability p. Let the output be Y.
(a) What is the probability of $X=0$ given $Y=0$?
(b) What is the probability of $X=1$ given $Y=0$?

4. [3 bonus points] Give an example of a discrete-time random process which is wide sense stationary but not strict sense stationary.

