EE 703: Digital Message Transmission Instructor: Saravanan Vijayakumaran Indian Institute of Technology Bombay Autumn 2013

Quiz 2: 12 points

1. [4 points] A communication system transmits one of three messages m_1, m_2 , and m_3 using signals $s_1(t), s_2(t)$, and $s_3(t)$. The signal $s_3(t) = 0$ and the signals $s_1(t)$ and $s_2(t)$ are shown below. The channel is AWGN channel with noise PSD $\frac{N_0}{2}$.

- (a) Determine an orthonormal basis for this signal set, and depict the signal constellation.
- (b) If the three messages are equiprobable, what is the optimal decision rule?
- (c) What is the average decision error probability of the optimal decision rule in terms of E_b and N_0 ?
- 2. [4 points] A binary signaling scheme over an AWGN channel with noise PSD $\frac{N_0}{2}$ is equally likely to transmit the following two signals. One of the two signals is transmitted every T seconds.

- (a) What is the E_b for this system in terms of T?
- (b) What is the optimal decision rule?
- (c) What is the average decision error probability of the optimal decision rule in terms of E_b and N_0 ?
- (d) By how many decibels does this system underperform a binary antipodal signaling system with the same $\frac{E_b}{N_0}$?
- 3. [4 points] Show that for equiprobable binary signaling over an AWGN channel **any** pair of antipodal signals represents the optimal choice of signal pair. Assume E_b is fixed.