EE 703: Digital Message Transmission Instructor: Saravanan Vijayakumaran Indian Institute of Technology Bombay Autumn 2013

Quiz 3: 12 points

1. Suppose that the 8-PSK constellation shown below is used over a complex AWGN channel with PSD N_0 . Assume that all the eight signals are equally likely to be transmitted.

- (a) Express E_b as a function of R.
- (b) Derive the power efficiency of this modulation scheme. *Hint:* $\sin \frac{\pi}{8} \approx \frac{3}{8}$.
- (c) Calculate **any two** of the following three quantities as a function of E_b and N_0 .
 - i. The exact symbol error probability of the ML receiver.
 - ii. The intelligent union bound on the symbol error probability of the ML receiver.
 - iii. The nearest neighbor approximation to the symbol error probability of the ML receiver.
- 2. Suppose observations Y_i , i = 1, 2, ..., N are Poisson distributed with parameter λ . Assume that the Y_i 's are independent.
 - (a) Derive the ML estimator for λ .
 - (b) Find the mean and variance of the ML estimate.

Recall that a Poisson distributed random variable with parameter λ has a probability mass function given by

$$\Pr(Y = n) = \frac{e^{-\lambda}\lambda^n}{n!}, n = 0, 1, 2, \dots$$

with mean and variance both equal to λ .

3. The following set of four signals is used to send two bits over a baseband AWGN channel with PSD $\frac{N_0}{2}$.

$$s_1(t) = -2Ap(t), s_2(t) = -Ap(t), s_3(t) = Ap(t), s_4(t) = 2Ap(t)$$

where $p(t) = I_{[0,1]}(t)$ and Assume that all the four signals are equally likely to be transmitted.

- (a) Derive the power efficiency of this modulation scheme.
- (b) Specify a Gray code for mapping each symbol to 2 bits.
- (c) Calculate the bit error probability of the ML receiver in terms of E_b and N_0 assuming the Gray code in part (b).